
CMR

INSTITUTE OF

TECHNOLOGY Scheme Of Evaluation
Internal Assessment Test 2 – NOV.2016

Sub: Embedded Computing Systems Code: 10CS72

Date: 02/11/2016 Duration: 90mins

Max

Marks: 50
Sem: VII Branch: CSE

Note: Answer Any Five Question

Question

Description Marks Distribution Max
Marks

1

a)
(i) Full workout of problem with correct NZCV

ARM flag set

(ii) Full workout of problem with correct NZCV

ARM flag set

2

2
4

10 M
b)

i. 1-2 differences plus at least 1 example

ii. 1-2 differences plus at least 1 example

iii. 1-2 differences plus at least 1 example

2

2

2

6

2

a)
List at least 4 techniques

Explain any one technique with example

2

2
4

10 M

b) i.Sample C code fragment for the above ARM

assembly code

ii.Lifetime graph

iii.Modified C code statement

iv.Lifetime graph for the modified C code

v.ARM assembly code for the modified C code

vi.DFG

1

1

1

1

1

1

6

3

a)
i.Full Calculation of average memory access latency

with correct answer

ii. Full calculation of hit rate with correct answer

2

2
4

10 M b)
i. 1-2 differences plus at least 1 example

ii. 1-2 differences plus at least 1 example

iii. 1-2 differences plus at least 1 example

2

2

2

6

4

a)
Explanation of user mode, and relevance to OS

Explanation of Supervisor mode, and relevance to

OS

2

2
4

10 M

b)
i. Calculation of turn around time and waiting time

using FIFO

ii. Calculation of turn around time and waiting time

using preemptive SJF

iii. Calculation of turn around time and waiting time

using RR

Justification

1.5

1.5

1.5

1.5

6

5

a)
Definition of RTOS

List at least 6 services

Explanation of at least one service in detail

2

1

1

4

10 M
b)

i. ARM Assembly

ii. CDFG

iii. Correct calculation of cyclomatic complexity

2

2

2

6

6

a) Single assignment form

DFG

2

2
4

10 M b)
Definition of IPC

Explain at least 2 IPC techniques

2

4
6

7

a) i. Optimized code using code motion

ii. optimized code using loop unrolling

2

2
4

10 M
b) Definition of Task Synchronization

Explain at least 2 Task Synchronization techniques

2

4
6

8

a) Code logic and usage of POSIX primitives

Syntax & Documentation

2

2
4

10 M
b)

Functional Requirements

Non-functional Requirements

3

3
6

Page 1 of 19

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test - II

Sub: Embedded Computing Systems Code: 10CS72

Date: 02/11/2016 Duration: 90 mins Max Marks: 50 Sem: VII Branch: CSE

Answer Any FIVE FULL Questions

 Marks
OBE

CO RBT

1(a) 1. Apply the principle of ARM status word control and calculate the CPSR status

for the operations:

(i) -1-1 (ii) 2^31 -1 +1

(i) -1-1

-1: 1111……1111 (32 bits)
-1: 1111……1111 (32 bits)
On adding =(1)1111……1111 (32 bits + 1 carry out)
 = -2 with carry out

N Z C V

1 0 1 0

(ii) 2^31 -1 +1

2^31 -1: 0111….1111 (32 bits)
1: 0000….0001 (32 bits)
On adding=(0)1000….0000 (32 bits, NO carry out)
 = -2^31

N Z C V

1 0 0 1

[4] CO3 L3

(b) Differentiate the following with examples:

i. Cooperating vs Competing processes

ii. DFG vs CDFG programming models

iii. Deadlock vs Livelock

i. Cooperating vs Competing processes

Cooperating processes Competing processes

In this model, one process requires

the inputs from other processes to

complete its execution

In this model, the processes do not

share anything among themselves,

but they compete for the system

resources.

[6] CO4 L4

Page 2 of 19

They can further be classified as

cooperation though sharing, and

cooperation though communication

Here the classification in based on

the type of resource being shared

like file, display device etc

E.g. Process B requiring data X from

Process A to execute.

E.g. Process A needs printer P to

print file f1, and Process B also

needs Printer P to print file f2.

ii. DFG vs CDFG programming models

DFG CDFG

Data Flow Graph is a model of

program with no conditionals.

Control/Data Flow Graph model

uses DFG as an element, adding

constructs to describe control.

Precisely, only one entry point and

one exit point.

May have multiple exit points

depending on how a program is

written.

Constitutes one basic block consisting

of operators as nodes and variables as

edges.

Usually contains more than one

basic blocks. Constitutes two types

of nodes, viz., decision nodes and

data flow nodes.

For the given input data set, ALL

statements are executed.

Based on the input data set, only

selected paths may execute.

e.g. C fragment:

x=a+b;

y=a-c;

z=x+d;

e.g. C fragment:

i=0;

if (a<b)

 i+=10;

else

 i-=10;

iii. Deadlock vs Livelock

Deadlock Livelock

Condition in which a process is

waiting for resource held by another

process, which in turn is waiting for a

resource held by the first process.

Condition in which a process always

does something but is unable to

make any progress towards

execution completion.

Situation where none of the processes

are able to make any progress in their

execution due to the cyclic

Situation where progress seem to

happen all the time but actually no

real execution. This is similar to the

Page 3 of 19

dependency of resources. This ends

up in none of the resources being

utilized.

situation ‘always busy, doing
nothing’.

e.g. Pa blocked by Pb for resource. Pb

blocked by Pa for resource.

e.g. Both Pa and Pb needs x and y

for completion.

step 1: Pa holds x, Pb holds y

step 2: Pa drops x, Pb drops y

Repeat steps 1 and 2

(c) -- [--] -- --

2(a) List the different program optimization techniques. Explain any one technique

with an example.

1. Expression simplification

2. Dead code elimination

3. Procedure inlining

4. Loop transformations

5. Register allocation

6. Scheduling

7. Instruction selection

Expression Simplification:

This is a useful area for machine-independent transformations. Laws of

algebra are used to simplify expressions. For example, distributive law is

applied to rewrite the following expression:

a*b+a*c;

Re-written as a*(b+c);

The new expression has only teo operations rather than three for the

original form. This is certainly cheaper because it is both faster and

smaller.

[4] CO2 L2

(b) Analyze the following ARM assembly code:

LDR r0,a
LDR r1,b
ADD r2,r0,r1
STR r2,w
LDR r0,c
LDR r1,d
ADD r2,r0,r1
STR r2,x
LDR r1,c
ADD r0,r1,r2
STR r0,u
LDR r0,a

[6] CO4 L4

Page 4 of 19

LDR r1,b
SUB r2,r1,r0
STR r2,v

Answer the following:

i.Write the sample C code fragment for the above ARM assembly code
(1) w=a+b;

(2) x=c+d;

(3) u=c+x;

(4) v=b-a;

ii.Draw a lifetime graph that shows uses of register in register allocation

from the above C statement.

iii.Modify the obtained C code statement using operator scheduling for

register allocation
(1) w=a+b;

(2) v=b-a;

(3) x=c+d;

(4) u=c+x;

iv.Draw a lifetime graph for the modified C code

v.Write a ARM assembly code for the modified C code using register

allocation.
LDR r0,a
LDR r1,b
ADD r2,r0,r1
STR r2,w
SUB r2,r1,r0
STR r2,v
LDR r0,c
LDR r1,d
ADD r2,r0,r1
STR r2,x

a

b

c

d

w

x

u

v

1 2 3 4

a

b

c

d

w

x

u

v

1 2 3 4

Page 5 of 19

LDR r1,c
ADD r0,r1,r2
STR r0,u

vi.Draw DFG for (i) and (iii)

DFG for (i) and (iii) are the same, as shown below.

(c) -- [--] -- --

3(a) 2. Solve the following.

i. What is the average memory access time of machine whose hit rate is

93% with cache access time of 5 nsec, main memory access time of 80

nano sec?

Tav = h*Tcache + (1-h)*Tmain

Tav = 0.93* 5 + (0.07)*80 ns

Tav = 10.25 ns

ii. Calculate cache hit rate if the cache access time is 5 nano sec, average

memory access time is 6.5 nano sec, and main memory access time is

80 nano sec.

Tav = h*Tcache + (1-h)*Tmain

6.5 = h*5 + (1-h)*80

h=0.98, or 98% hit rate

[4] CO3 L3

(b) Differentiate the following with examples:

i. Counting semaphore vs Binary semaphore

ii. Non-preemptive scheduling vs Preemptive Scheduling

iii. Non-blocking vs Blocking communication

i. Counting semaphore vs Binary semaphore

Counting semaphore Binary semaphore

It is a sleep and wake up based

mutual exclusion for shared memory

access, which limits the access of

resources by a fixed number of

processes/threads.

Aka Mutex is also a counting

semaphore, but restricting the access

to only one process/thread at any

given time.

Maintains count between 0 and N, Uses 1-bit value tracking. That is

[6] CO4 L4

a b c

+

w

d

+

x +

u

-

v

Page 6 of 19

where N is the number of

processes/threads that can access

resource at a given time.

counts 0 to 1.

e.g Network card supporting N ports

for N parallel communication.

e.g. Printer uses a 1-bit lock stating

whether it is in use or not. A process

can use a printer only if it is not

locked.

ii. Non-preemptive scheduling vs Preemptive Scheduling

Non-preemptive scheduling Preemptive Scheduling

In a multitasking model, this allows

the currently executing task/process

to run until it terminates or enters

wait state, waiting for an IO or

system resource.

In this multitasking model, every

task in the Ready queue gets a

chance to execute by evicting the

currently running process. Here the

scheduler temporarily pre-empts

(stops) the currently running process.

E.g First Come First Served (FCFS),

Last Come First served (LCFS),

Shortest Job First (SJF), Priority

based scheduling.

E.g. Preemptive SJF, Round Robin

(RR).

iii. Non-blocking vs Blocking communication

Non-blocking Blocking communication

Allows the process to continue

execution after sending the

communication.

After sending communication, the

process goes to waiting state until it

receives a response.

e.g. Synchronous RPC waiting for

acknowledgement for every message

sent.

e.g. Asynchronous RPC, where the

calling process continues its

execution while remote process

executes the procedure.

(c) -- [--] -- --

4(a) Explain the user and supervisory mode structure in OS.

The applications/services are classified into two categories: 1. User applications

and 2. Kernel applications. The program code corresponding to the kernel

applications/services are kept in contiguous area (OS dependent) of primary

memory and is protected from the un-authorized access by the user

programs/applications. The memory space at which the kernel code is located is

known as kernel space. One way to access kernel space is via supervisor mode

supported by the underlying architecture. For example, memory management

systems allow the addresses of memory locations to be changed dynamically.

[4] CO2 L2

Page 7 of 19

Control of the memory management unit (MMU) is typically reserved for

supervisor mode to avoid the obvious problems that could occur when program

bugs cause inadvertent changes in the memory management registers.

All user applications are loaded to a specific area of primary memory and this

memory area is referred as User Space. All the user space applications run in

user mode.

(b) Three processes with ID’s P1, P2, P3 with estimated execution completion

time 5, 10, 7ms respectively enters the ready queue together in the order P1,

P2, P3. Process P4 with estimated execution completion time 2ms enters the

ready queue after 5 ms. Which of the following scheduling policies is best

for this scenario? Justify your choice.

i. FIFO

Process Waiting Time (WT) (ms) Turn Around Time (TAT) (ms)

P1 0 5

P2 5 15

P3 15 22

P4 22-5 = 17 24-5=19

Average 9.25 15.25

ii. preemptive SJF

Process Waiting Time (WT) (ms) Turn Around Time (TAT) (ms)

P1 0 5

P2 14 24

P3 7 14

P4 5-5=0 7-5=2

[6] CO3 L3

P1 P2 P3

0 5

P4

15 24 8 14 6 7

P1 P2 P3

0 5

P4

6 15 16 22 23-24

Page 8 of 19

Average 5.25 11.25

iii. RR (Time slice 2ms)

Process Waiting Time (WT) (ms) Turn Around Time (TAT) (ms)

P1 10 15

P2 14 24

P3 15 22

P4 6-5=1 8-5=3

Average 10.0 16.0

From the above three scheduling policies, we see that preemptive SJF yields the

least average waiting time (AWT) and Average Turn Around Time (ATAT).

Thus, preemptive SJF is the best scheduling policy for the given scenario.
(c) -- [--] -- --

5(a) What is RTOS? List the different services of RTOS, and explain any one in

detail.

RTOS stands for Real-Time Operating System, which is a type of operating

system that implements policies and rules concerning time-critical allocation

of system resources. RTOS decides which applications should run in which

order, and how much time needs to be allocated for each application. E.g.

Windows CE, QNX, VxWorks MicroC/OS-II.

Services of RTOS:

1. Real-time Kernel

a. Task/Process management

b. Task/Process scheduling

c. Task/Process synchronization

d. Error/Exception handling

e. Primary and Secondary Memory Management

f. File System Management

g. I/O system/ Device Management

h. Interrupt Handling

i. Time Management

j. Protection systems

[4] CO2 L2

P1

0 2

P2 P3 P4 P1 P2 P3 P1 P2 P3 P2 P3 P2

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Page 9 of 19

2. Hard Real-Time

3. Soft-Real-Time

Hard/Soft -Real time:

RTOS must adhere to the timing constraints of the processes/ applications.

Based on the type of deadline, RTOS can be classified as either hard real

time or soft real time system.

RTOS that strictly adhere to the deadline associated to tasks without any

slippage are referred to as hard real-time systems. Missing any deadline may

produce catastrophic results, including permanent data loss, irrecoverable

damages and/or safety concerns. Here, the principle is ‘A late answer is

wrong answer’. E.g. Anti-lock Braking System (ABS), Airbag control in

vehicles.

RTOS that does not strictly guarantee meeting deadlines, but offers best

effort to meet the deadline are referred to as soft real-time systems. Missing

deadlines for tasks are acceptable if the frequency of missing deadline is

within the compliance limit of the Quality of Service (QoS). E.g. Automatic

Teller Machine (ATM), Audio-Video playback systems.

(b) Analyze the following C fragment:

if (a < b) {

 if (c < d)

 x = 1;

 else

 x = 2;

}

else{

 if (e < f)

 x = 3;

 else

 x = 4;

}

i. Generate ARM assembly code.

ADR R0, a ;
LDR R1, [R0]; R1 <- a
ADR R0, b
LDR R2, [R0]; R2 <- b
ADR R0, c ;
LDR R3, [R0]; R3 <- c
ADR R0, d
LDR R4, [R0]; R4 <- d
CMP R1, R2
BGE outer_else
CMP R3, R4
BGE inner_else1
MOV R5, #1
JUMP after
inner_else1:MOV R5, #2
JUMP after
outer_else: ADR R0, e
LDR R3, [R0] ; R3 <- e

[6] CO3 L3

Page 10 of 19

ADR R0, f
LDR R4, [R0] ; R4 <- f
CMP R3, R4
BGE inner_else2
MOV R5, #3
JUMP after
inner_else2: MOV R5, #4
after: ADR R0, x
STR R5, [R0] ; R5 -> x

ii. Draw the CDFG.

iii. Find the cyclomatic complexity of the CDFGs.

Cyclomatic Complexity M = e – n + 2p

From the above CDFG,

Number of edges, e = 10

Number of nodes, n= 8

Number of exit points, p = 1

Therefore, Cyclomatic Complexity M = 10-8+2=4

(c) -- [--] -- --

6(a) 3. For the following basic block given below, rewrite it in single-assignment form,

and then generate the DFG for that form.

 r=a+b-c;

 s=2*r;

 t=b-d;

 r=d+e;

Single-Assignment Form:

r1=a+b-c;

 s=2*r1;

[4] CO3 L3

a<b

c<d

x=1 x=2

e<f

x=3 x=4

F

T

F F

T T

Page 11 of 19

 t=b-d;

 r2=d+e;

(b) What is inter-process communication (IPC)? Explain the different IPC

techniques.

Inter Process Communication (IPC) is the mechanism provided by the OS as

part of the process abstraction through which the processes/tasks communicate

with each other.

Some of the important IPC mechanisms adopted by various kernels are

explained below:

1. Shared Memory

Processes share some area of the memory to communicate by the process is

written to the shared memory area. Other processes which require this

information can read the same from the shared memory area.

Some of the different mechanisms adopted by different kernels are as

below:

a. Pipes: Pipe is a section of the shared memory used by processes for

communicating. Pipes follow the client-server architecture. A process

which creates a pipe is known as a pipe server and a process which

connects to a pipe is known as pipe client. It can be unidirectional,

allowing information flow in one direction or it can be bidirectional,

allowing bi-directional information flow. Generally, there are two types

of pipes supported by the OS. They are:

Anonymous pipes: They are unnamed, unidirectional pipes used for data

transfer between two processes.

Names Pipes: They are named, unidirectional or bidirectional for data

exchange between two processes.

b. Memory Mapped Objects: This is a shared memory technique adopted

by some real-time OS for allocating shared block of memory which can

be accesses by multiple process simultaneously. In this approach, a

[6] CO2 L2

r1

b a c d

+

-

-

t

*

2

s

e

+

r2

Page 12 of 19

mapping object is created and physical storage for it is reserved and

committed. A process can map the entire committed physical area ir a

block of it to its virtual address space. All read-write operations to this

virtual address space by a process is directed to its committed physical

area. Any process which wants to share data with other processes can

map the physical memory area of the mapped object to its virtual

memory space and use it for sharing the data.

2. Message Passing

Message passing is an (a)synchronous information exchange mechanism

used for Inter Process/Thread communication. The major difference

between shared memory and message passing is that through shared

memory lots of data can be shared whereas only limited amount of data is

passed through message passing. Also, message passing is relatively fast

and free from synchronization overheads compared to shared memory.

Based on the message passing operation between the processes, message

passing is classified into:

a. Message Queue: Usually the process which wants to talk to another

process posts the message to a First-In-First-Out (FIFO) queue called

‘message queue’, which stores the message temporarily in a system
defined memory object, to pass it to the desired process. Messages are

sent and received through send and receive methods. The messages are

exchanged through the message queue. It should be noted that the exact

implementation is OS dependent. The messaging mechanism is

classified into synchronous and asynchronous based on the behavior of

the message posting thread. In asynchronous messaging, the message

posting thread just posts the message to the queue and it will not wait for

an acceptance (return) from the thread to which the message is posted.

Whereas in synchronous messaging, the thread which the message is

posts the message enters waiting state and waits for the message result

from the thread to which the message is posted. The thread which

invoked the send message becomes blocked and the scheduler will not

pick it up for scheduling.

b. Mailbox: Mailbox is an alternative to ‘message queues’ used in certain
RTOS for IPC, usually used for one way messaging. The thread which

creates the mailbox is known as ‘mailbox server’ and the threads which
subscribe to the mailbox are known as ‘mailbox clients’. The mailbox
server posts messages to the mailbox and notifies it to the clients which

are subscribed to the mailbox. The clients read the message from the

mailbox on receiving the notification. The process of creation,

subscription, message reading and writing are achieved through OS

kernel provided API calls.

Page 13 of 19

c. Signaling: Signaling is a primitive way of communication between

processes/threads. Signals are used for asynchronous notifications where

one process/trhead fires a signal, indicating the occurrence of a scenario

which the other process(es)/thread(s) is waiting. Signals are not queued

and they do not carry any data.

3. Remote Procedure calls and Sockets

Remote Procedure Call (RPC) is the IPC mechanism used by a process to

call a procedure of another process running on the same CPU or on a

different CPU which is interconnected in a network. In object oriented

language terminology RCP is also known as Remote Method Invocation

(RMI). RPC is mainly used for distributed applications like client-server

applications. The CPU/process containing the procedure which needs to be

invoked remotely is known as server. The CPU/process which initiates an

RPC request is known as client.

Sockets are used for RPC communication. Socket is a logical endpoint in a

two-way communication link between two applications running on a

network. Sockets are of different types, namely, Internet Sockets (INET),

UNIX sockets, etc. The INET sockets works on internet communication

protocols, such as TCP/IP and UDP. They are classified into stream sockets

and datagram sockets.

Stream sockets are connection oriented, and they use TCP to establish a

reliable connection.

Datagram sockets rely on UDP for communication. The UDP connection is

unreliable when compared to TCP.

(c) -- [--] -- --

7(a) 4. Consider the following loop.

int N=8, M=4;
for (i = 0; i < N*M; i++)
 x[i] = a[i] * c[i];

i. Optimize the code applying code motion technique.

int N=8, M=4;
temp = N*M;
for (i = 0; i < temp; i++)
 x[i] = a[i] * c[i];

ii. Optimize the code applying loop unrolling 2 times.

int N=8, M=4;
temp = N*M;

[4] CO3 L3

Page 14 of 19

for (i = 0; i < temp; i+=2)
 x[i] = a[i] * c[i]

 x[i+1] = a[i+1] * c[i+1]

(b) What is Task synchronization? Explain the different Task synchronization

techniques.

The act of making processes aware of the access of shared resources by each

process to avoid conflicts is known as Task synchronization. Task

synchronization is essential for 1. Avoiding conflicts in resource access (racing,

deadlock, livelock, starvation) in a multitasking environment, and 2. Ensuring

proper sequence of operation across processes. E.g. producer-consumer

problem.

Different task synchronization techniques to address them are as follows:

1. Mutual Exclusion through busy waiting/spin lock:

Busy waiting is the simplest method for enforcing mutual exclusion. The

busy waiting technique uses a lock variable for implementing mutual

exclusion. Each process/thread checks this lock variable before entering the

critical section. The lock is set to ‘1’ by a process/thread if the
process/thread is already in its critical section; otherwise the lock is set to

‘0’. The major challenge in implementing the lock variable based

synchronization is the non-availability of a single atomic instruction which

combines the reading, comparing and setting of the lock variable. To

address this issue is tackled by combining the actions of reading the lock

variable, testing its state and setting the lock into a single step, with a

combined hardware and software support. Most processors support a single

instruction ‘Test and Set Lock’ (TSL) for testing and software support. This
instruction call copies the value of the lock variable and sets it to a nonzero

value.

The lock based mutual exclusion implementation always checks the state of

a lock and waits till the lock is available. This keeps the processes/threads

always busy and forces the processes/threads to wait or spin in one state till

the availability of the lock for proceeding further. Hence, this

synchronization is got the name ‘Busy Waiting’ or ‘Spin Lock’. For the

same reason, this mechanism leads to underutilization, wastage of processor

time and power consumption.

2. Mutual Exclusion through Sleep and Wake up:

An alternative to ‘busy waiting’ is the ‘Sleep & Wakeup’ mechanism. When
a process is not allowed to access the critical section that has been locked by

another process, the process undergoes ‘Sleep’ and enters ‘Blocked’ state.
The process which is blocked on waiting for access to the critical section is

awakened by the process which currently owns the critical section. Sleep &

[6] CO2 L2

Page 15 of 19

Wake can be implemented in different ways. Few of them are listed below.

Semaphores: It is a sleep and wake up based mutual exclusion for shared

memory access, which limits the access of resources by a fixed number of

processes/threads. This is further classified into two: Binary semaphore and

Counting Semaphore. The binary semaphore, also called mutex, provides

exclusive access to shared resource by allocating the resource to a single

process at a time, and not allowing other process to access it when it is

being owned by a process. Counting Semaphore, on the other hand,

maintains a count between zero and a value. It limits the usage of a resource

to the maximum value of the count supported by it.

Critical Section Objects: In Windows CE, the critical section object is same

as the mutex object, except that Critical section object can only be used by

the threads of a single process (Intra process). The piece of code which

needs to be made critical section is places in the ‘critical section’ area by the
process. The memory area which is to be used as the ‘critical section’ is
allocated by the process. Once the critical section is initialized, all threads in

the process can use it using an API call for getting exclusive ownership of

the critical section.

Events: Event object is a synchronization technique which uses the

notification mechanism for synchronization. In the concurrent execution we

may come across situations which demand processes to wait for a particular

sequence for its operations. For example, in producer-consumer threads, the

consumer should wait to consume the data for producer to produce the data,

and likewise, producer should wait for consumer to consume data. Event

objects are helpful to implement notification mechanisms in such scenarios.

A thread/process can wait for an event and another thread/process can set

this event for processing by the waiting thread/process.

(c) -- [--] -- --

8(a) Applying multithreading concept, write a program to print “Hello I’m main
thread” from main thread, and “Hello I’m child thread” from child thread using

POSIX primitives.

#include <pthread.h>
#include <stdlib.h>
#include <stdio.h>

//Child thread function
void *new_thread(void *thread_args)
{
 //Print from Child thread

[4] CO3 L3

Page 16 of 19

 printf(“Hello I’m child thread\n”);
 return NULL;
}
//Main thread
int main(void)
{
 pthread_t tcb;
 //create child thread
 if(pthread_create(&tcb, NULL, new_thread, NULL))
 {
 //Child thread creation failed
 printf(“Error creating thread!\n”);
 return -1;
 }

 //Print from Main thread
 printf(“Hello I’m main thread\n”);

 //Join child thread here
 if(pthread_join(tcb,NULL))
 {
 //Joining failed
 printf(“Error in joining thread!\n”);
 return -1;
 }
return 1;
}

(b) Explain all the factors that need to be evaluated in selection of an RTOS.

The decision of choosing RTOS for an embedded design is very critical. A lot

of factors need to be carefully analyzed before making the decision on the

selection of an RTOS. These can be either functional or non-functional..

1. Functional Requirements

a. Processor Support: It is not necessary that all RTOS support all kinds of

processor architecture. It is essential to ensure the processor support by

the RTOS.

b. Memory Requirements: The OS requires ROM memory for holding the

OS files and it is normally stored in a non-volatile memory like FLASH.

OS also requires working memory RAM for loading the OS services.

Since embedded systems are memory constrained, it is essential to

evaluate the minimal ROM and RAM requirements for the OS under

consideration.

c. Real-time capabilities: It is not mandatory that the OS for all embedded

systems need to be real-time and all embedded systems are ‘real-time’ in
behavior. The task/process scheduling policies plays an important role in

the ‘real-time’ behavior of an OS. Analyze the real-time capabilities if

the OS under consideration and the standards met by the OS for real

[6] CO2 L2

Page 17 of 19

time capabilities.

d. Kernel and Interrupt Latency: The kernel of the OS may disable

interrupts while executing certain services and it may lead to interrupt

latency. For and embedded system whose response requirements are

high, this latency should be minimal.

e. Inter Process Communication and Task Synchronization: The

implementation of IPC and Synchronization is OS kernel dependent.

Certain kernels may provide a bunch of options whereas others provide

very limited options. Certain kernels implement policies for avoiding

priority inversion issues in resource sharing.

f. Modularization support: Most of the OS provide a bunch of features. At

times it may not be necessary for an embedded product for its

functioning. It is very useful if the OS supports modularization in the

developer can choose the essential modules and re-compile the OS

image for functioning. E.g. Windows CE.

g. Support for Networking and Communication: The OS kernel may

provide stack implementation and driver support for a bunch of

communication interfaces and networking. Ensure that the OS under

consideration provides support for all the interfaces required by the

embedded product.

h. Development and Debugging Support: Certain OS include runtime

libraries required for running applications written in languages like Java

and C#. A Java Virtual Machine (JVM) customized for the OS is

essential for running java applications.

2. Non-Functional Requirements

a. Custom Developed or Off the Shelf: Depending on the OS requirement,

it is possible to go for the complete development of an OS suiting the

embedded system needs or use an off the shelf, readily available OS,

which is either a commercial product or an Open Source product, which

is in close match with the system requirements. Sometimes it may be

possible to build the required features by customizing the Open Source

OS. The decision is purely dependent on the development cost, licensing

fees for the OS, development time and availability of skilled resources.

b. Cost: The total cost for developing or buying the OS and maintaining it

in terms of commercial product and custom build needs to be evaluated

before taking a decision on the selection of OS.

c. Development and Debugging Tools Availability: The availability of

development and debugging tools is a critical decision making factor in

the selection of an OS for embedded design. Certain Operating Systems

may be superior in performance, but the availability of tools for

supporting the development may be limited.

d. Ease of Use: How easy is it to use a commercial RTOS is another

Page 18 of 19

important feature that needs to be considered in the RTOS selection.

e. After Sales: For a commercial embedded RTOS, after sales in the form

of e-mail, on-call services, etc for bug fixes, critical patch updates and

support for production issues, etc should be analyzed thoroughly.

(c) -- [] -- --

Page 19 of 19

Course Outcomes

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

CO1:

Identify and describe the hardware &

software components and functional

& non-functional features of

embedded systems. 1 - - - - - - - - - - -

CO2:

Explain the functionalities and

various challenges faced in

embedded computing. 1 1 - - - - - - - - - -

CO3:

Apply the principles of system

design process and implement each

design phase. 2 1 - - 1 - - - - - - -

CO4:

Analyze existing embedded system

applications, and their relationship

between different hardware and

software components. 2 3 - 2 2 2 2 - 1 1 - -

CO5:

Test designs at different levels using

verification and validation

techniques. 2 2 - 2 3 - - - 1 1 - -

CO6:

Design solutions to overcome

limitations in existing embedded

system application. 3 3 3 3 3 2 2 2 3 3 2 2

Cognitive

level
KEYWORDS

L1
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,

when, where, etc.

L2
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,

discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate,

change, classify, experiment, discover.

L4
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,

infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,

discriminate, support, conclude, compare, summarize.

GOOD LUCK!

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions;

PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and

society; PO7- Environment and sustainability; PO8 – Ethics; PO9 - Individual and team work;

PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

