
CMR

INSTITUTE OF

TECHNOLOGY

Improvement Test 1 – November. 2016

Sub: SYSTEM SOFTWARE Code: 10CS52

Date: 18/11/2016 Duration:

90

mins

Max

Marks: 50

Sem: 5 Branch:

CSE(B

& C

sec)

Note: Answer any five full questions. Each question carries 10 marks.

Scheme and Solution

1. Explain any two machine independent macro processor features..

 Mentioning 2 design options 1M

 Explaining 2 features with example 9M

The design of macro processor doesn‟t depend on the architecture of the machine.

We will be studying some extended feature for this macro processor. These features are:

• Concatenation of Macro Parameters

• Generation of unique labels

• Conditional Macro Expansion

• Keyword Macro Parameters

1.Concatenation of unique labels:

• Most macro processor allows parameters to be concatenated with other character

strings. Suppose that a program contains a series of variables named by the

symbols XA1, XA2, XA3,…, another series of variables named XB1, XB2,

XB3,…, etc. If similar processing is to be performed on each series of labels, the

programmer might put this as a macro instruction.

• The parameter to such a macro instruction could specify the series of variables to

be operated on (A, B, etc.). The macro processor would use this parameter to

construct the symbols required in the macro expansion (XA1, Xb1, etc.).

• Suppose that the parameter to such a macro instruction is named &ID. The body

of the macro definition might contain a statement like

 LDA X&ID

& is the starting character of the macro instruction; but the end of the parameter is not marked. So in the case

of &ID1, the macro processor could deduce the meaning that was intended. • If the macro definition contains

contain &ID and &ID1 as parameters, the situation would be unavoidably ambiguous. • Most of the macro

processors deal with this problem by providing a special concatenation operator. In the SIC macro language,

this operator is the character →. Thus the statement LDA X&ID1 can be written as

2.Generation of Unique Labels •

It is not possible to use labels for the instructions in the macro definition, since every expansion of macro

would include the label repeatedly which is not allowed by the assembler. • This in turn forces us to use

relative addressing in the jump instructions. Instead we can use the technique of generating unique labels for

every macro invocation and expansion.

• During macro expansion each $ will be replaced with $XX, where xx is atwo-character alphanumeric counter

of the number of macro instructions expansion. For example,

XX = AA, AB, AC… This allows 1296 macro expansions in a single program. The following program shows

the macro definition with labels to the instruction.

2. Generate an algorithm for a one pass macro processor. 10M

Writing algorithm -10M

3. Expand the macro call statements for the following macro definition 10M

i) RDBUFF F1,BUFA,RLENG,04,1024

ii) RDBUFF F2,BUFB,RLENG

RDBUFF MACRO &INDEV,&BUFADR,&RECLTH,&EOR,&MAXLTH

 IF (&EOR NE ‘ ‘)

 &EORCT SET 1

 ENDIF

 CLEAR X

 CLEAR A

 IF (&EORCT EQ 1)

 LDCH =X ‘&EOR’

 RMO A,S

 ENDIF

 IF (&MAXLTH EQ ‘ ‘)

 +LDT #4096

 ELSE

 +LDT #&MAXLTH

 ENDIF

 $LOOP TD =X ‘&INDEV’

 JEQ $LOOP

 RD =X ‘&INDEV’

 STCH &BUFADR,X

 TIXR T

 JLT $LOOP

 STX &RECLTH

 MEND

 The program with macros is supplied to the macro processor. Each macro invocation statement will be

expanded into the statement s that form the body of the macro, with the arguments from the macro invocation

substituted for the parameters in the macro prototype. During the expansion, the macro definition statements

are deleted since they are no longer needed. The arguments and the parameters are associated with one another

according to their positions.

The first argument in the macro matches with the first parameter in the macro prototype and so on. After

macro processing the expanded file can become the input for the Assembler. The Macro Invocation statement

is considered as comments and the statement generated from expansion is treated exactly as though they had

been written directly by the programmer.

 The difference between Macros and Subroutines is that the statement s from the body of the Macro is

expanded the number of times the macro invocation is encountered, whereas the statement of the subroutine

appears only once no matter how many times the subroutine is called. Macro instructions will be written so

that the body of the macro contains no labels.

4. Explain the general purpose macro processors design options. 10M

 Definition-2M

 Expalnation-8M

Macro Processor Design Options

 Recursive Macro expression

 General-Purpose Macro Processors

 Macro Processing within Language Translators

General Purpose Macro Processor

 Advantages of general-purpose macro processors:

 The programmer does not need to learn about a different macro facility for

each compiler or assembler language—the time and expense involved in

training are eliminated

 The costs involved in producing a general-purpose macro processor are

somewhat greater than those for developing a language-specific processor

 However, this expense does not need to be repeated for each language; the result is substantial overall

saving in software development cost

 user to define the specific set of rules to be followed

 Comments should usually be ignored by a macro processor, however, each programming language has its

own methods for identifying comments

 Each programming language has different facilities for grouping terms, expressions, or statements—a

general-purpose macro processor needs to taking these grouping into account

 Languages differ substantially in their restrictions on the length of identifiers and the rules for the formation

of constants

 Programming languages have different basic statement forms—syntax used for macro definitions and macro

invocation statements

Macro definition

» header:

– a sequence of keywords and parameter markers (%)

– at least one of the first two tokens in a macro header must be a keyword, not a parameter marker

» body:

– the character & identifies a local label

– macro time instruction (.SET, .IF .JUMP, .E)

– macro time variables or labels (.)

Macro invocation

» There is no single token that constitutes the macro ―name‖

» Constructing an index of all macro headers according to the keywords in the first two tokens of the header

» Example

– DEFINITION:

 ADD %1 TO %2

 ADD %1 TO THE FIRST ELEMENT OF %2

– INVOCATION:

 DISPLAY TABLE

5.Explain the various data structures used in the implementation of a macro processor. 10M

Data structures-5M

Implementation-5M

The design considered is for one-pass assembler. The data structures required are

• DEFTAB (Definition Table)

o Stores the macro definition including macro prototype and macro body

o Comment lines are omitted.

o References to the macro instruction parameters are converted to a

positional notation for efficiency in substituting arguments.

• NAMTAB (Name Table)

o Stores macro names

o Serves as an index to DEFTAB

 Pointers to the beginning and the end of the macro definition

(DEFTAB)

• ARGTAB (Argument Table)

o Stores the arguments according to their positions in the argument list.

o As the macro is expanded the arguments from the Argument table are

substituted for the corresponding parameters in the macro body.

o The figure below shows the different data structures described and their

relationship.

6.Explain the data structures and pass 1 algorithm of SIC assembler. 10M

Explanation of datastructures-5M

Algorithm-5M

The simple assembler uses two major internal data structures: the operation Code

Table (OPTAB) and the Symbol Table (SYMTAB).

OPTAB:

• It is used to lookup mnemonic operation codes and translates them to their

machine language equivalents. In more complex assemblers the table also

contains information about instruction format and length.

• In pass 1 the OPTAB is used to look up and validate the operation code in the source program. In pass 2, it is

used to translate the operation codes to machine language. In simple SIC machine this process can be

performed in either in pass1 or in pass 2. But for machine like SIC/XE that has instructions of different

lengths, we must search OPTAB in the first pass to find the instruction length for incrementing LOCCTR.

• In pass 2 we take the information from OPTAB to tell us which instruction

format to use in assembling the instruction, and any peculiarities of the object

code instruction.

• OPTAB is usually organized as a hash table, with mnemonic operation code as

the key. The hash table organization is particularly appropriate, since it provides

fast retrieval with a minimum of searching. Most of the cases the OPTAB is a static table- that is, entries are

not normally added to or deleted from it. In such cases it is possible to design a special hashing function or

other data structure to give optimum performance for the particular set of keys being stored.

SYMTAB:

• This table includes the name and value for each label in the source program, together with flags to indicate

the error conditions (e.g., if a symbol is defined in two different places).

• During Pass 1: labels are entered into the symbol table along with their assigned address value as they are

encountered. All the symbols address value should get resolved at the pass 1.

• During Pass 2: Symbols used as operands are looked up the symbol table to obtain

the address value to be inserted in the assembled instructions.

• SYMTAB is usually organized as a hash table for efficiency of insertion and retrieval. Since entries are

rarely deleted, efficiency of deletion is the important criteria for optimization.

• Both pass 1 and pass 2 require reading the source program. Apart from this an intermediate file is created by

pass 1 that contains each source statement together with its assigned address, error indicators, etc. This file is

one of the inputs to the

pass 2.

• A copy of the source program is also an input to the pass 2, which is used to retain

the operations that may be performed during pass 1 (such as scanning the operation field for symbols and

addressing flags), so that these need not be performed during pass 2. Similarly, pointers into OPTAB and

SYMTAB is retained for each operation code and symbol used. This avoids need to repeat many of the table-

searching operations.

LOCCTR:

Apart from the SYMTAB and OPTAB, this is another important variable which helps in

the assignment of the addresses. LOCCTR is initialized to the beginning address mentioned in the START

statement of the program. After each statement is processed, the length of the assembled instruction is added to

the LOCCTR to make it point to the next instruction. Whenever a label is encountered in an instruction the

LOCCTR value gives the address to be associated with that label.

The Algorithm for Pass 1:

Begin

read first input line

if OPCODE = „START‟ then begin

save #[Operand] as starting addr

initialize LOCCTR to starting address

write line to intermediate file

read next line

end(if START)

else

initialize LOCCTR to 0

While OPCODE != „END‟ do

begin

if this is not a comment line then

begin

if there is a symbol in the LABEL field then

begin

search SYMTAB for LABEL

if found then

set error flag (duplicate symbol)

else

(if symbol)

search OPTAB for OPCODE

if found then

add 3 (instr length) to LOCCTR

else if OPCODE = „WORD‟ then

add 3 to LOCCTR

else if OPCODE = „RESW‟ then

add 3 * #[OPERAND] to LOCCTR

else if OPCODE = „RESB‟ then

add #[OPERAND] to LOCCTR

else if OPCODE = „BYTE‟ then

begin

find length of constant in bytes

add length to LOCCTR

end

else

set error flag (invalid operation code)

end (if not a comment)

write line to intermediate file

read next input line

end { while not END}

write last line to intermediate file

Save (LOCCTR – starting address) as program length

End {pass 1}

7a . Generate an algorithm for absolute loader. 5M

Begin

read Header record

verify program name and length

read first Text record

while record type is <> „E‟ do

begin

{if object code is in character form, convert into internal representation}

move object code to specified location in memory

read next object program record

end

jump to address specified in End record

end

7b . What is loader? Develop an algorithm for a bootstrap loader. 5M

Definition of loader-1M

Algorithm-4m

When a computer is first turned on or restarted, a special type of absolute loader,

called bootstrap loader is executed. This bootstrap loads the first program to be run by

the computer -- usually an operating system. The bootstrap itself begins at address 0. It

loads the OS starting address 0x80. No header record or control information, the object

code is consecutive bytes of memory.

The algorithm for the bootstrap loader is as follows

Begin

X=0x80 (the address of the next memory location to be loaded

Loop

A←GETC (and convert it from the ASCII character

code to the value of the hexadecimal digit)

save the value in the high-order 4 bits of S

A←GETC

combine the value to form one byte A← (A+S)

store the value (in A) to the address in register X

X←X+1

End

It uses a subroutine GETC, which is

GETC A←read one character

if A=0x04 then jump to 0x80

if A<48 then GETC

A ← A-48 (0x30)

if A<10 then return

A ← A-7

return

8. Generate the complete object program for the following SIC/XE program .

Generation of address 3M

Calculation of object codes 4M

Complete object program 3M

 LOC object code

 COPY START 1000

 1000 CLOOP +JSUB RDREC A3101157

 1004 LDA LENGTH 83214A

 1007 COMP ZERO 932141

 100A JEQ EXIT B32003

 100D J CLOOP BB2FFC

 1010 EXIT STA BUFFER 532009

 1013 LDA THREE 832138

 1016 STA TOTAL_LENGTH 53213B

 1019 RSUB

 101C BUFFER RESW 100 4C0000

 1148 EOF BYTE C ’EOF’ 454F46

 114B ZERO WORD 0

 114E THREE WORD 3

 1151 LENGTH RESW 1

 1154 TOTAL_LENGTH RESW 1

 1157 RDREC LDX ZERO 632001

 MNEMONICS:

JSUB=A0, LDA=80, LDX=60, STA=50, COMP=90, RSUB=4C, JEQ=B0, J=B8

 .

