
Page 1 of 10

CMR
INSTITUTE OF
TECHNOLOGY

USN

Internal Assesment Test - III

Sub: Embedded Computing Systems Code: 10CS72

Date: 15/11/2016 Duration: 90 mins Max Marks: 50 Sem: VII Branch: CSE

Answer Any FIVE FULL Questions

 Marks
OBE

CO RBT

1(a) What is Task control block (TCB)? Explain the structure of TCB.

A Task Control Block (TCB) is a data structure that is used for holding the

information corresponding to a task.

Structure of TCB:

Task ID: Task identification number

Task State: Current state (e.g., running, idle, etc.)

Task type: Hard real-time/soft-real-time, or background task.

Task Priority: Priority of the task

Task Context Pointer: Pointer for saving context.

Task Memory Pointers: Pointer to code memory, data memory, and stack

memory

Task System Resource Pointers: Pointers to system resources (semaphores,

mutex, etc.)

Task Pointers: Pointers to other TCBs

Other Parameters: Other relevant task parameters.

[2] CO2 L2

(b) Three processes with process IDs P1, P2 and P3 with estimated completion

time 8, 5, 4 milliseconds, respectively, enters the queue together in the order

P2, P3, P1. Process P4 with estimated execution time 4 milliseconds entered

the 'Ready' queue 3 milliseconds later the start of execution of P1. Calculate

the waiting time and Turn Around Time (TAT) for each process and the

average waiting time and Average Turn Around Time (Assuming there is

no I/O waiting) for the processor using RR algorithm with time slice=2ms.

Process Waiting Time (ms) TAT (ms)

P1 13 21

P2 10 15

P3 6 10

P4 8 12

AVG 9.25 14.5

[8] CO3 L3

2(a) List different types of multitasking.

1. Cooperative multitasking

[2] CO1 L1

P2 P3 P1 P2 P3 P1 P4 P2 P1 P4 P1

0 2 3-4 5-6 7-8 9-10 11-12 13-14 15 16-17 18-19 20-21

Page 2 of 10

2. Preemptive multitasking

3. Non-preemptive multitasking

(b) What is advanced configuration and power interface? Explain the basic

global power states supported by ACPI.

Advanced Configuration and Power Interface (ACPI) is an open industry

standard for power management services. ACPI provides some basic power

management facilities and abstracts the hardware layer, the OS has its own

power management module that determines the policy, and the OS then uses

ACPI to send the required controls to the hardware.

ACPI supports the following five basic global power states:

 G3, the mechanical off state, in which the system consumes no power.

 G2, the soft off state, which requires a full OS reboot to restore the

machine to working condition. This state has four sub-states”

o S1, a low wake up latency state with no loss of system context.

o S2, a low wake up latency state with loss of CPU and system

cache state.

o S3, a low wake up latency state in which all system states except

for main memory is lost, and

o S4, the lowest power sleeping state in which all devices are

turned off.

 G1, the sleeping state in which the system appears to be off and the time

required to return to working condition is inversely proportional to power

consumption.

 G0, the working state in which the system is fully usable.

 The legacy state in which the system does not comply with ACPI.

[8] CO2 L2

3(a) Define distributed embedded system.

An embedded system built around a network or one in which communication

between processing elements is explicit.

[2] CO1 L1

(b) Illustrate with a neat diagram, the packet structure of the following:

(i) I2C (ii) Ethernet (iii) CAN (iv) IP

(i) I2C

(ii) Ethernet

(iii) CAN

[8] CO1 L1

Page 3 of 10

(iv) IP

4(a) Define IDE. Explain briefly its role in embedded software development.

Integrated Development Environment (IDE) is a software package which

bundles a Text Editor (Source code editor), Cross-Compiler (cross-platform

development), linker and a debugger.

IDE provides an integrated environment for developing and debugging the

target processor specific embedded firmware.

[2] CO1 L1

(b) Explain the following terms:

(i) Disassembler (ii) Decompiler (iii) Debugging (iv) Boundary scan

Disassembler: Utility program which converts machine code into target

processor specific assembly code/instructions.

Decompiler: Utility program for translating machine codes into corresponding

high level language instructions.

Debugging: The process of diagnosing the firmware execution, monitoring the

target processor’s registers and memory while the firmware is running and

checking the signals from various buses of the embedded hardware.

Boundary Scan: Technique for testing the interconnection among the various

chips, which support boundary scanning, in a complex board containing too

many interconnections and multiple planes for routing.

[8] CO2 L2

5(a) What is Inter Process Communication?

Inter Process Communication (IPC) is the mechanism provided by the OS as

part of the process abstraction through which the processes/tasks communicate

with each other.

[2] CO1 L1

Page 4 of 10

(b) 1. Explain the following IPC techniques:

2. (i) Shared Memory (ii) Message Passing (iii) Remote Procedure Call

1. Shared Memory

Processes share some area of the memory to communicate by the process is

written to the shared memory area. Other processes which require this

information can read the same from the shared memory area.

Some of the different mechanisms adopted by different kernels are as

below:

a. Pipes: Pipe is a section of the shared memory used by processes for

communicating. Pipes follow the client-server architecture. A process

which creates a pipe is known as a pipe server and a process which

connects to a pipe is known as pipe client. It can be unidirectional,

allowing information flow in one direction or it can be bidirectional,

allowing bi-directional information flow. Generally, there are two types

of pipes supported by the OS. They are:

Anonymous pipes: They are unnamed, unidirectional pipes used for data

transfer between two processes.

Named Pipes: They are named, unidirectional or bidirectional for data

exchange between two processes.

b. Memory Mapped Objects: This is a shared memory technique adopted

by some real-time OS for allocating shared block of memory which can

be accesses by multiple processes simultaneously. In this approach, a

mapping object is created and physical storage for it is reserved and

committed. A process can map the entire committed physical area or a

block of it to its virtual address space. All read-write operations to this

virtual address space by a process are directed to its committed physical

area. Any process which wants to share data with other processes can

map the physical memory area of the mapped object to its virtual

memory space and use it for sharing the data.

2. Message Passing

Message passing is an (a)synchronous information exchange mechanism

used for Inter Process/Thread communication. The major difference

between shared memory and message passing is that through shared

memory lots of data can be shared whereas only limited amount of data is

passed through message passing. Also, message passing is relatively fast

and free from synchronization overheads compared to shared memory.

Based on the message passing operation between the processes, message

passing is classified into:

a. Message Queue: Usually the process which wants to talk to another

process posts the message to a First-In-First-Out (FIFO) queue called

[8] CO2 L2

Page 5 of 10

‘message queue’, which stores the message temporarily in a system

defined memory object, to pass it to the desired process. Messages are

sent and received through send and receive methods. The messages are

exchanged through the message queue. It should be noted that the exact

implementation is OS dependent. The messaging mechanism is

classified into synchronous and asynchronous based on the behavior of

the message posting thread. In asynchronous messaging, the message

posting thread just posts the message to the queue and it will not wait for

an acceptance (return) from the thread to which the message is posted.

Whereas in synchronous messaging, the thread which the message is

posts the message enters waiting state and waits for the message result

from the thread to which the message is posted. The thread which

invoked the send message becomes blocked and the scheduler will not

pick it up for scheduling.

b. Mailbox: Mailbox is an alternative to ‘message queues’ used in certain

RTOS for IPC, usually used for one way messaging. The thread which

creates the mailbox is known as ‘mailbox server’ and the threads which

subscribe to the mailbox are known as ‘mailbox clients’. The mailbox

server posts messages to the mailbox and notifies it to the clients which

are subscribed to the mailbox. The clients read the message from the

mailbox on receiving the notification. The process of creation,

subscription, message reading and writing are achieved through OS

kernel provided API calls.

c. Signaling: Signaling is a primitive way of communication between

processes/threads. Signals are used for asynchronous notifications where

one process/trhead fires a signal, indicating the occurrence of a scenario

which the other process(es)/thread(s) is waiting. Signals are not queued

and they do not carry any data.

3. Remote Procedure calls and Sockets

Remote Procedure Call (RPC) is the IPC mechanism used by a process to

call a procedure of another process running on the same CPU or on a

different CPU which is interconnected in a network. In object oriented

language terminology RCP is also known as Remote Method Invocation

(RMI). RPC is mainly used for distributed applications like client-server

applications. The CPU/process containing the procedure which needs to be

invoked remotely is known as server. The CPU/process which initiates an

RPC request is known as client.

Sockets are used for RPC communication. Socket is a logical endpoint in a

two-way communication link between two applications running on a

Page 6 of 10

network. Sockets are of different types, namely, Internet Sockets (INET),

UNIX sockets, etc. The INET sockets works on internet communication

protocols, such as TCP/IP and UDP. They are classified into stream sockets

and datagram sockets.

Stream sockets are connection oriented, and they use TCP to establish a

reliable connection.

Datagram sockets rely on UDP for communication. The UDP connection is

unreliable when compared to TCP.

6(a) What is Task synchronization?

The act of making processes aware of the access of shared resources by each

process to avoid conflicts is known as Task synchronization. Task

synchronization is essential for 1. Avoiding conflicts in resource access (racing,

deadlock, livelock, starvation) in a multitasking environment, and 2. Ensuring

proper sequence of operation across processes. E.g. producer-consumer

problem.

[2] CO1 L1

(b) Explain the synchronization issues in resource utilization. Using Dining

Philosopher's problem, mention the solutions for those issues.

Synchronization issues:

1. Racing: It is the situation in which multiple processes compete (race) each

other to access and manipulate shared data concurrently. In a race condition,

the final value of the shared data depends on the process which acted on the

data finally.

2. Deadlock: It is a condition in which a process is waiting for resource held by

another process, which in turn is waiting for a resource held by the first

process. In this state, none of the processes are able to make any progress in

their execution due to the cyclic dependency of resources. This ends up in

none of the resources being utilized.

The following conditions favour a deadlock occurrence:

Mutual exclusion: The criteria that only one process can hold a resource at a

time.

Hold and Wait: The condition in which a process holds a shared resource by

acquiring the lock controlling the shared access and waiting for an additional

resources held by other processes.

No Resource Preemption: The criteria that OS cannot take back a resource

from a process which is currently holding it and the resource can only be

released voluntarily by the process holding it.

Circular Wait: A process is waiting for resource held by another process.

E.g., Pa blocked by Pb for resource. Pb blocked by Pa for resource.

3. Livelock: It is a condition in which a process always does something but is

unable to make any progress towards execution completion. Here, progress

[8] CO2 L2

Page 7 of 10

seems to happen all the time but actually no real execution takes place. This

is similar to the situation ‘always busy, doing nothing’. E.g. Both Pa and Pb

needs x and y for completion.

Step 1: Pa holds x, Pb holds y

Step 2: Pa drops x, Pb drops y

Repeat steps 1 and 2

4. Starvation: It is a condition in which a process does not get the resources

required to continue its execution for a long time.

Task synchronization issues in dining philosopher’s problem:

Race condition: When a philosopher is about t o pick up the right fork, the

philosopher sitting to his right tries to grab the left of his, which happens to

be the right fork of the former.

Deadlock: All the philosophers involve in brainstorming together and eat

together. Each philosopher picks up the left fork first, and unable to proceed

further because right fork is missing.

Livelock: All philosophers pick the left fork at the same time, but notice the

right fork is missing. Hence, they put back their left fork. As soon as they see

the forks on the table they repeat the same process.

Starvation: Both deadlock and livelock discussed above leads to starvation.

Solution to dining philosophers addressing task synchronization issue:

Round robin allocation and FIFO allocation are valid solutions to the dining

philosophers’ problem. But these enable only one philosopher to eat at any

given time, which is sub-optimal solution.

A better solution will be to impose rules in accessing forks as follows:

1. When a philosopher is hungry, s/he picks the left fork first.

2. If the right fork is not available, the philosopher puts down the left fork,

and waits for a random interval of time before making the next attempt.

Another solution is that, each philosopher requires a semaphore (mutex)

before picking up any fork. When a philosopher feels hungry s/he checks

whether the philosopher of the left and right is already using the fork

(checking the associated semaphore). If the forks are in use by the

neighboring philosophers, the philosopher waits till the forks are available.

A philosopher when finished eating puts the forks down and informs the

philosophers sitting to the left and right, who are hungry, by signaling the

semaphores associated with the forks.

7(a) Define RTOS.

RTOS stands for Real-Time Operating System, which is a type of operating

system that implements policies and rules concerning time-critical allocation

of system resources. RTOS decides which applications should run in which

order, and how much time needs to be allocated for each application. E.g.

[2] CO1 L1

Page 8 of 10

Windows CE, QNX, VxWorks MicroC/OS-II.

(b) Explain the different functional and non-functional requirements while

choosing RTOS.

1. Functional Requirements

a. Processor Support: It is not necessary that all RTOS support all kinds of

processor architecture. It is essential to ensure the processor support by

the RTOS.

b. Memory Requirements: The OS requires ROM memory for holding the

OS files and it is normally stored in a non-volatile memory like FLASH.

OS also requires working memory RAM for loading the OS services.

Since embedded systems are memory constrained, it is essential to

evaluate the minimal ROM and RAM requirements for the OS under

consideration.

c. Real-time capabilities: It is not mandatory that the OS for all embedded

systems need to be real-time and all embedded systems are ‘real-time’ in

behavior. The task/process scheduling policies plays an important role in

the ‘real-time’ behavior of an OS. Analyze the real-time capabilities if

the OS under consideration and the standards met by the OS for real

time capabilities.

d. Kernel and Interrupt Latency: The kernel of the OS may disable

interrupts while executing certain services and it may lead to interrupt

latency. For and embedded system whose response requirements are

high, this latency should be minimal.

e. Inter Process Communication and Task Synchronization: The

implementation of IPC and Synchronization is OS kernel dependent.

Certain kernels may provide a bunch of options whereas others provide

very limited options. Certain kernels implement policies for avoiding

priority inversion issues in resource sharing.

f. Modularization support: Most of the OS provide a bunch of features. At

times it may not be necessary for an embedded product for its

functioning. It is very useful if the OS supports modularization in the

developer can choose the essential modules and re-compile the OS

image for functioning. E.g. Windows CE.

g. Support for Networking and Communication: The OS kernel may

provide stack implementation and driver support for a bunch of

communication interfaces and networking. Ensure that the OS under

consideration provides support for all the interfaces required by the

embedded product.

h. Development and Debugging Support: Certain OS include runtime

libraries required for running applications written in languages like Java

and C#. A Java Virtual Machine (JVM) customized for the OS is

essential for running java applications.

[8] CO2 L2

Page 9 of 10

2. Non-Functional Requirements

a. Custom Developed or Off the Shelf: Depending on the OS requirement,

it is possible to go for the complete development of an OS suiting the

embedded system needs or use an off the shelf, readily available OS,

which is either a commercial product or an Open Source product, which

is in close match with the system requirements. Sometimes it may be

possible to build the required features by customizing the Open Source

OS. The decision is purely dependent on the development cost, licensing

fees for the OS, development time and availability of skilled resources.

b. Cost: The total cost for developing or buying the OS and maintaining it

in terms of commercial product and custom build needs to be evaluated

before taking a decision on the selection of OS.

c. Development and Debugging Tools Availability: The availability of

development and debugging tools is a critical decision making factor in

the selection of an OS for embedded design. Certain Operating Systems

may be superior in performance, but the availability of tools for

supporting the development may be limited.

d. Ease of Use: How easy is it to use a commercial RTOS is another

important feature that needs to be considered in the RTOS selection.

e. After Sales: For a commercial embedded RTOS, after sales in the form

of e-mail, on-call services, etc for bug fixes, critical patch updates and

support for production issues, etc should be analyzed thoroughly.

8(a) List the different files generated during the cross-compilation of an

Embedded C file.

1. List file (.lst)

2. Preprocessor output file

3. Object file (.obj)

4. Map file (.map)

5. Hex file (.hex)

[2] CO1 L1

(b) Explain the following terms:

(i) Host (ii) Target (iii) ICE (iv) OCD
Host: In typical embedded computing system development, it is common to do at

least part of the software development on a PC or workstation. This system is

known as the host.

Target: The hardware on which the code will finally run is known as the target.

ICE: In-circuit emulator is a hardware device for emulating the target CPU for

debug purpose.

OCD: In On-Chip Debugging, the processors/controllers incorporate dedicated

debug module to the existing architecture for controlling debugging.

[8] CO2 L2

Page 10 of 10

Course Outcomes

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

CO1:

Identify and describe the hardware &

software components and functional

& non-functional features of

embedded systems. 1 - - - - - - - - - - -

CO2:

Explain the functionalities and

various challenges faced in

embedded computing. 1 1 - - - - - - - - - -

CO3:

Apply the principles of system

design process and implement each

design phase. 2 1 - - 1 - - - - - - -

CO4:

Analyze existing embedded system

applications, and their relationship

between different hardware and

software components. 2 3 - 2 2 2 2 - 1 1 - -

CO5:

Test designs at different levels using

verification and validation

techniques. 2 2 - 2 3 - - - 1 1 - -

CO6:

Design solutions to overcome

limitations in existing embedded

system application. 3 3 3 3 3 2 2 2 3 3 2 2

Cognitive

level
KEYWORDS

L1
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,

when, where, etc.

L2
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,

discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate,

change, classify, experiment, discover.

L4
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,

infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,

discriminate, support, conclude, compare, summarize.

GOOD LUCK!

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions;

PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and

society; PO7- Environment and sustainability; PO8 – Ethics; PO9 - Individual and team work;

PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

