CMR INSTITUTE OF TECHNOLOGY

Internal Assessment Test II – Nov. 2016

Sub:	Modern Control Theory							Code:	10EE55		
Date:	02/11/2016	Duration:	90 mins	Max Marks:	50	Sem:	IV	Branch:	EEE		

Note: Answer for FIFTY marks.

Note:	Answer for FIFTY marks.			
		Marks	OI	BE
		Warks	CO	RBT
1.	Examine the complete state controllability and observability of a system with the following state-space model.	[5+5]	CO5	L3
	$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -2 & -1 & -3 \\ 0 & -2 & 1 \\ -7 & -8 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} u, y = \begin{bmatrix} 4 & 6 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$			
2.	A single input system is given by the following state equation:	[8+2]	CO6	L3
	$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -2 & 0 \\ 2 & 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 10 \\ 1 \\ 0 \end{bmatrix} u.$			
3.	Design a state feedback controller which will enforce the closed-loop poles at $-1 \pm j2$, -6 . Draw a block diagram of the closed-loop system. Design a full state observer for the following system at eigen values $-2 \pm j2\sqrt{3}$ and -5 . Draw a block diagram of the system with state observer.	[8+2]	CO6	L3
	$ \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u, y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} $			
4.(a)	Describe PID Controller with block diagram.	[4]	CO1	L1
4.(b)	Draw the input-output characteristics of following nonlinearities and explain in detail: (i) Dead-zone (ii) Backlash.	[6]	CO3	L4
5.	Draw the phase plane trajectory for the following equation using isocline method: $\ddot{x} + 2\zeta\omega_n\dot{x} + \omega_n^2x = 0.$	[10]	CO4	L3
6.	Given $\zeta = 0.5$, $\omega_n = 1$ rad/s, with $x = 0$ and $\dot{x} = 2$ as initial condition. Construct the phase trajectory by delta method for a nonlinear system represented by differential equation	[10]	CO4	L3
	$\ddot{x} + 4 \dot{x} \dot{x} + 4x = 0.$			
	Choose initial conditions as $x(0) = 1$ and $\dot{x}(0) = 0$.			

7. A second order system is described by

$$\dot{x} = Ax$$
, where $A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$

Assuming matrix Q to be identity matrix, solve for P in the equation $A^{T}P + PA = -Q$. Find Liapunov function V(x). Use Liapunov theorem and examine the stability of the system at origin.

8.(a) Examine the sign definiteness of the following quadratic functions:

(i)
$$V(x) = -2x_1^2 - 2x_2^2 - 4x_3^2 - 2x_1x_2 + 4x_2x_3 + 4x_1x_3$$

(ii)
$$V(x) = -2x_1^2 - x_2^2 - 4x_3^2 - 2x_1x_2 + 2x_2x_3 + 4x_1x_3$$
.

8.(b) Explain Liapunov's theorems on (i) stability and (ii) asymptotic stability.

	CO	KBT.
[10]	CO5	L5
LJ		
[6]	CO1	L1
F 43	001	T 1
[4]	CO1	L1

Course Outcomes		PO1	PO2	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12
CO1:	Explain state-space model of dynamic systems, sign definiteness of functions, Liapunov's stability criteria.	3	0	1	0	0	0	0	0	1	0	0	0
CO2:	Relate transfer function and state-space model for LTI systems.	3	0	0	0	0	0	0	0	1	0	0	0
CO3:	Identify elements with significant nonlinear behaviour in practical systems.	3	1	1	0	0	0	0	0	1	0	0	0
CO4:	Analyze solution of linear and non-linear state equations.	3	1	0	0	0	0	0	0	1	0	0	0
CO5:	Assess state controllability and observability of dynamic systems, stability of linear and non-linear systems using state-space model.	3	0	0	0	0	0	0	0	1	0	0	0
CO6:	Design state feedback controller and state observer.	3	0	2	0	0	0	0	0	1	0	0	0

Cognitive level	KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions; PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7-Environment and sustainability; PO8 - Ethics; PO9 - Individual and team work; PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

10 EE 55: Modern Control Theory - IAT-2.

1. Examine the complete state controllability and observability of a system with the following state-space model.

$$\begin{bmatrix} \mathring{\chi}_1 \\ \mathring{\chi}_2 \\ \mathring{\chi}_3 \end{bmatrix} = \begin{bmatrix} -2 & -1 & -3 \\ 0 & -2 & 1 \\ -7 & -8 & -9 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \chi_1, \quad \chi = \begin{bmatrix} 4 & 6 & 8 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix}.$$

State Controllability: No. of States: n = 3.

$$Q_c = \begin{bmatrix} 2 & -11 & 142 \\ 1 & 0 & -40 \\ 2 & -40 & 437 \end{bmatrix}$$
; Rank $Q_c Q_c = 3$.
= No. of state Variables.

Hence by Kalman's test the given state-space model is complete state controllable.

$$Q_0 = \begin{bmatrix} 4 & 6 & 8 \\ -64 & -80 & -78 \\ 674 & 848 & 814 \end{bmatrix}$$
; Rank $\{Q_0\} = 3$.
= No. of State Variables.

Honce by Kalman's test the given state-spoce model is complete State observable.

2. A single imput system is given by the following state equation:

$$\begin{bmatrix} \dot{\chi}_1 \\ \dot{\chi}_2 \\ \dot{\chi}_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & -2 & 0 \\ 2 & 1 & -3 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} + \begin{bmatrix} 10 \\ 1 \\ 2 \\ 1 \end{bmatrix} \chi.$$

Design a state teedback controller which will enforce the closed-loop poles at $-1\pm j2$, -6. Draw a block diagram of the closed-loop system.

Desired chare. eq:
$$9_{d8}^{(8)} = (8+1-j2)(8+j2)(8+j2)(8+6) = 0$$

 $(8^{2}+28+5)(8+6) = 0$
 $8^{3}+88^{2}+178+30=0$

Controllability matrix:
$$Q_c = [B \ AB \ A^2B - - A^{n-1}B]$$
; here.
 $Q_c = \begin{bmatrix} 10 & -10 & 10 \\ 1 & 8 & -26 \\ 0 & 21 & -75 \end{bmatrix}$

Ackermann's Formula for pole-plecement:

$$|X = [0 \ 0 - 1] \ Q_{c}^{-1} \ Q_{des}^{(A)}.$$

$$= [0 \ 0 \] \ [0 \ -10 \ 10]^{-1} \ (A^{3} + 8A^{2} + 17A + 30])$$

$$= [0 \ 0 \] \ [0 \ 21 \ -75]$$

$$= \begin{bmatrix} -0.2222 & 4.2222 & -2 \end{bmatrix}$$

Block diagram:

3. Design a full 8tate observer for the following 8ystem at eigen Values $-2\pm j2\sqrt{3}$ and -5. Draw a block diagram of the 8ystem with 8tate observer.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \chi,$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{bmatrix}.$$

Desired cheq:
$$6(8) = (3+2+j2\sqrt{3})(3+2-j2\sqrt{3})(3+5)$$

$$= (8^{2} + 48 + 16) (9+5)$$

$$= 8^{3} + 98^{2} + 269 + 6580$$

$$= 8^{3} + 98^{2} + 369 + 80$$

Observability Matrix:

$$Q_0 = \begin{bmatrix} C & CA \\ CA^2 \\ CA^{n-1} \end{bmatrix}$$

Ackermann's Formula for observer pole placement:

$$K_{e} = \int_{des}^{des} (A) Q_{c}^{-1} \begin{bmatrix} 0 \\ 0 \\ \vdots \end{bmatrix}$$

$$= (A^{3} + 7A^{2} + 2BA + BB) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$=\begin{bmatrix} 3 \\ 7 \\ -19 \end{bmatrix}$$

Block diagram:

O.7. A Second order system is described by $\dot{\alpha} = A \times , \quad \text{where } A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$ Assuming matrix Θ to be identity matrix, solve for P in the equation $A^TP + PA = -\Theta$. Find Liapunov function V(n). We Liapunov theorem and to examine the Stubility of the system at origin.

Let P be a symmetric matrix:

$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{12} & P_{22} \end{bmatrix}; \quad -Q = A^T P + P A$$

$$-\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{12} & \gamma_{22} \end{bmatrix} + \begin{bmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{12} & \gamma_{22} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} -P_{12} & -P_{22} \\ P_{11} - P_{12} & P_{12} - P_{12} \\ P_{12} - P_{12} & P_{12} - P_{22} \end{bmatrix} + \begin{bmatrix} -P_{12} & P_{11} - P_{12} \\ -P_{22} & P_{12} - P_{22} \end{bmatrix}$$

$$= \begin{bmatrix} -2P_{12} & P_{11} - P_{12} - P_{22} \\ P_{11} - P_{12} - P_{22} & 2(P_{12} - P_{22}) \end{bmatrix}$$

$$\begin{array}{c} -2P_{12} = -1 \\ P_{11} - P_{12} - P_{22} = 0 \end{array}$$

$$\begin{array}{c} P_{12} = \frac{1}{2} \\ P_{11} = 1.5 = \frac{3}{2} \end{array}$$

$$\begin{array}{c} P_{12} = \frac{1}{2} \\ P_{11} = 1.5 = \frac{3}{2} \end{array}$$

$$\begin{array}{c} P_{12} = \frac{1}{2} \\ P_{12} = \frac{1}{2} \end{array}$$

P: Positive definite matrix.

Liapunov function: V(x) = xTPx. Positive definite function.

$$||\chi|| \rightarrow \infty \Rightarrow \qquad \forall (\pi) \rightarrow \infty$$

V(n) is negative definite, hence by Liapunov's theorem the system is Asymptotic Stable in-the-large at origin.

8(a) Examine the sign definiteness of the following quadratic functions: (i) $V(0) = -2x_1^2 - 2x_2^2 - 4x_3^2 - 2x_1x_2 + 4x_2x_3 + 4x_1x_3$.

(i)
$$V(n) = -2x_1^2 - 2x_2^2 - 4x_3^2 - 2x_1x_2 + 2x_2x_3 + 4x_1x_3$$
.
(ii) $V(n) = -2x_1^2 - x_2^2 - 4x_3^2 - 2x_1x_2 + 2x_2x_3 + 4x_1x_3$.

(i) $V(n) = -2x_1^2 - 2x_2^2 - 4x_3^2 - 2x_1x_2 + 4x_2x_3 + 4x_1x_3$.

$$= \begin{bmatrix} \chi_1 & \chi_2 & \chi_3 \end{bmatrix} \begin{bmatrix} -2 & -1 & 2 & \chi_1 \\ -1 & -2 & 2 & \chi_2 \\ 2 & 2 & -4 & \chi_3 \end{bmatrix}$$

= xTPx.

$$-P = \begin{bmatrix} 2 & 1 & -2 \\ 1 & 2 & -2 \\ -2 & -2 & 4 \end{bmatrix}$$
, $2 > 0$, $\begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} > 0$, $\begin{vmatrix} -P \\ > 0 \end{vmatrix}$.

-P is Positive definite => The given function is negative definite function.

(ii)
$$V(n) = -2x_1^2 - x_2^2 - 4x_3^2 - 2x_1x_2 + 2x_2x_3 + 4x_1x_3$$
.

$$= \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} -2 & -1 & 2 \\ -1 & -1 & 1 \\ 2 & 1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x^T P x.$$

$$-P = \begin{bmatrix} 2 & 1 & -2 \\ 1 & 1 & -1 \\ -2 & -1 & 4 \end{bmatrix} ; 2 > 0, |2| | > 0, |-P| > 0.$$

-P is Positive definite => P is posi Negative definite, hence the given function is negative definite function.