CMR INSTITUTE OF TECHNOLOGY

USN								
-----	--	--	--	--	--	--	--	--

Internal Assesment Test - II

Sub: LINEAR IC'S AND APPLICATIONS Cod						Code:	10EE56	
Date:	04 / 11 / 2016 Duration: 90 mins Max Marks: 50 Sem: V					V	Branch:	EEE
Answer Any FIVE FULL Questions								

	3.6.1	OF	BE
	Marks	СО	RBT
1 (a) Demonstrate the operation of inverting Schmitt trigger with a neat circuit	[10]	CO4	L3
diagram, waveforms and input-output characteristics.			
2 (a) Design a non inverting Schmitt trigger to have UTP=+3V and LTP=-5V.Use	[10]	CO4	L3
741 Op-amp with supply voltage Vcc=±15V.			
3 (a) Design an Astable multivibrator using a BiFET Op-amp to operate at	[10]	CO4	L3
frequency of 1KHz and amplitude $\pm 10V$.			
4 (a) Sketch the circuit of One shot multivibrator. Show the voltage waveforms at	[10]	CO4	L3
various points and explain its operation.			
$[5 (a)]$ Design a triangular/rectangular signal generator with $V_{o(p-p)}=7V$ and frequency	[10]	CO5	L3
range from 100Hz to 1Khz and adjustable duty cycle from 25% to 75%. Use			
$\pm 12V$ for Op-amps.			
6 (a) Design a RC phase shift oscillator to generate a sinusoidal output of 100Hz	[6]	CO5	L3
and supply voltage ±15V.			
(b) Explain the method to attain output amplitude in RC phase shift oscillator with	[4]	CO5	L2
circuit diagram.			
7 (a) Sketch the circuit of a second order high pass filter. Explain its operation and	[10]	CO6	L3
design procedure with frequency response curve.			
8 (a) Design a wideband band pass filter to meet the following specifications:-	[10]	CO6	L3
f_1 =5KHz; f_2 =15KHz and pass band gain =2			

Course Outcomes		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12
CO1:	Design AC amplifiers with the												
CO1.	specifications given.	3	1	3	2	0	0	0	0	1	0	0	1
CO2:	Explain the necessity of frequency												
CO2.	compensations for Op-amps	2	1	3	2	0	0	0	0	1	0	0	1
CO3:	Interpret the different signal processing												
CO3.	circuits using Op-amps.	3	1	3	2	0	0	0	0	1	0	0	1
CO4:	Experiment the different switching												
CO4.	applications of Op-amps	3	1	3	2	0	0	0	0	1	0	0	1
	Design triangular, sine and square												
CO5:	waveform generators with the given												
	frequency.	3	1	3	2	0	0	0	0	1	0	0	1
	Demonstrate the working of active												
CO6:	filters, voltage regulators and special												
	application of Op-amps.	3	1	3	2	0	0	0	0	1	0	0	1

Cognitive level	KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions; PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7-Environment and sustainability; PO8 - Ethics; PO9 - Individual and team work; PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

2(a)
$$0 \text{ TP} = 3V$$
 LTP = $-5V$.

Let $I_2 = 500 \mu A$
 $R_2 = \frac{077}{T_2} = \frac{3}{500 \times 10^6} = 6 \, \text{km} \left(5.6 \, \text{km} \right)$
 $R_2 = \frac{077}{T_2} = \frac{3}{500 \times 10^6} = \frac{3}{500 \times 10^6}$

For
$$Vce = \pm 15V$$
 $Vsat = \pm 13.5V$.

$$UTP = \frac{V_0 - V_F}{R_1} \times R_2$$

$$3 = \frac{13.5 - 0.7}{R_1} \times S.6 \times 10^3$$

$$R_1 = 23.89 \text{ kg.} (22)$$

$$R_1 = 5 = 813.5 - 0.7 \times 5.$$

$$LTP = V_0 - V_F \times R_2$$

$$5 = 813.5 - 0.7 \times 5.$$

$$3 = \frac{13.5 - 0.7}{R_1}$$

$$LTP = \frac{V_0 - V_F}{X_2} \times R_2$$

$$5 = \frac{13.5 - 0.7}{R_3}$$

for
$$R_2=5.6kn$$
 P_2
 P_2
 P_3
 P_3
 P_3
 P_3
 P_4
 P_3
 P_4
 P_4
 P_4
 P_5
 P_6
 P_7
 P_8
 P_8