CMR INSTITUTE OF TECHNOLOGY		USN										7)]]	S			
Internal Assesment Test - II																
Sub:	ELECTRIC POWER UTILIZTION Code							le: 10EE72								
Date:	02 / 11 / 2016 Duration: 90 mins Max Marks: 50 Sem: 7 Bra							Bran	nch: EEE							
Answer Any FIVE FULL Questions																
										OBE						
								Marks	СО	RBT						
1. I	1. Describe Electroplating Process. Summarize the different stages involved in									[10]	CO2	L2				
it.																
2											F101	002	1.0			
2	Discuss the following terms associated with Illumination. (a)Illumination (b)Luminous Flux (c)Coefficient of Utilization										[10]	CO3	L2			
	(d)Depreciation Factor (e)Reflection Factor															
3	Examine the different Lighting Schemes.										[10]	CO3	L3			
4 (a)	Discuss Electric Traction Systems.									[5]	CO5	L2				
(b)	Analyze the Requirements of an Ideal Traction System.									[5]	CO5	L4				
5	Compare AC and DC Systems of Traction.									[10]	CO5	L4				
6	Estimate the number and wattage of Lamps which would be required to								[10]	CO3	L2					
	Illuminate a workshop space 60 m X 15 m by means of Lamps mounted 5 m															
	Above the working plane. The average Illumination required is 100 lux. Coefficient of Utilization = 0.42															
	Maintenance Factor = 0.78															
	Luminous Efficiency = 16 Lumens / Watt															
	Space height ratio = Unity															
7	An Electric Train is to have acceleration and braking retardation of 0.8											[10]	CO5	L3		
	km/hr/s and 3.2 km/hr/s respectively. If the ratio of maximum to average															
	speed is 1.3 and the time for stop is 26 seconds. Calculate the schedule speed									eed						
	from a run of 1.5	km. Assume	e Simplifi	ied Tra	pezoi	dal S	from a run of 1.5 km. Assume Simplified Trapezoidal Speed Time Curve.									

Page 1 of 3

			I	I	1	I	I	I	1	1	I		I	
Course Outcomes		P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	PO11	P012	
CO1:	and	Analyze the advantages and methods of Electric Heating		-	-	-	1	1	-	-	1	-	-	-
CO2:	Summarize the processes involved for the extraction and refining of metals		-	-	-	-	1	1	-	-	1	-	-	-
CO3:	Explain the different types of Lamps and their working		1	-	-	-	1	1	-	-	1	-	-	-
CO4:	Identify the Factors affecting Electrodeposition Process		1	-	-	-	1	1	-	-	1	-	-	-
CO5:	Explain the methods of Speed Control of Traction Motors		1	-	-	-	1	2	-	-	1	-	-	-
CO6:	Analyze the configuration and performance of Electrical Vehicles		1	-	-	-	1	2	-	-	1	-	-	-
Cogniti	ve level				KEYV	WORI)S	1		1			1	
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.														
L2		summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend												
L3		Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.												
L4		Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.												
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discrimin support, conclude, compare, summarize.								nate,						

PO1 – Engineering knowledge; PO2 – Problem analysis; PO3 – Design/development of solutions; PO4 – Conduct investigations of complex problems; PO5 – Modern tool usage; PO6 – The Engineer and society; PO7- Environment and sustainability; PO8 – Ethics; PO9 – Individual and team work; PO10 – Communication; PO11 – Project management and finance; PO12 – Life-long learning

Solution for Internal Test 2

Electric Power Utilization

Answer any Five Full Questions. Each Question carries 10 marks:

1. Explanation of Electrolytic Process – 6 Marks

Diagram – 4 Marks

2. Definition of the terms associated with Illumination.

Definition of each term - 2 Marks each. 2 X5 = 10 Marks

3. Different Lighting Schemes – Direct Lighting, Indirect Lighting, Semi direct, Semi direct, General Lighting Schemes – Explanation – 7 Marks

Diagram – 3 Marks

- 4. (a) Electric Traction Systems Types Explanation 5 Marks.
 - (b) Requirements of an Ideal Traction System List the requirements 5Marks.
- 5. Comparison of AC and DC Systems of Traction List the points 10 Marks
- 6. Space Height Ratio = Horizontal distance between the lamps/ Mounting Height = unity

Number of Lamps Length wise = 60/5 = 12 (2 Marks)

Number of Lamps Breadth wise = 15/5 = 3 (2 Marks)

Total no : of lamps = $12 \times 3 = 36 \text{ Lamps}$

Gross Lumens required = E A/ UF X MF = 100 X 900/ 0.42 X 0.78= 274725 Lumen -2 Marks

Total wattage required = Gross Lumens / Lumens per watt = 274725 / 16 = 17170.3 W

Wattage of each lamp = Total wattage / Number of Lamps = 17170.3/36 = 476.95 W

Take the wattage as 500 W.

Arrangement of Lamps and wattage of Lamp - 4 Marks

7
$$k = \alpha + \beta/2 \ \alpha\beta = 2.815 - 2 \text{ Marks}$$

$$kVm2 - Vmt + D = 0$$

Solving we get t = 154.23 seconds - 3 Marks

Schedule Time, tsch = t + 26 = 180.23 seconds - 2 Marks

Schedule speed , Vsch = D / tsch = 1500 / 180.23 = 8.323 m/s = 29.96 km/hr - 1500 / 18

3 Marks