2.

Internal Assessment Test 1- Sep. 2016

(05)

[10]

Sub:	Information Theory & Coding					Code:	10EC55		
Date:	06 / 09 /16	Duration:	90 mins	Max Marks:	50	Sem:	V C	Branch:	ECE

Note: Answer any five full questions.

Proof for H' ≥ H

1. (a). The output of an information source consists of 185 symbols, 50 of which occurs with probability of 1/100 and remaining 135 occur with a probability of 1/270. The source emits 480 symbols/sec. Assume that the symbols are chosen independently, find the rate of information of the source. **[05]**

information of the source. $\mathcal{H}(S)$	[05] (03)	
\mathcal{R}_{s}	(02)	
(b). Prove the ADDITIVITY property of entropy.	[05]	

The state diagram of a Markov source is shown in the Fig. 2; find the state probabilities,

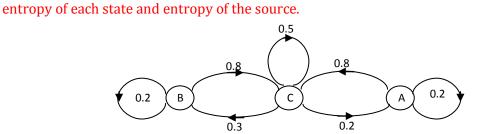


Fig. 2

P(A)	(01)
P(B)	(01)
P(C)	(01)
$\mathcal{H}_{_{\mathcal{A}}}$	(02)
$\mathcal{H}_{_{\mathbf{B}}}$	(02)
\mathcal{H}_{c}^{c}	(02)
$\mathcal{H}(S)$	(01)

3. Apply Shannon's encoding technique for the message, **CMR**, where each letter is associated with probabilities 0.2, 0.5 and 0.3 respectively. Calculate the code redundancy and if the same is applied for second extension, what is the impact on the redundancy? [10]

is applied for second extension, what is the impact on the redundancy?	լոսյ
Coding using I extension	(02)
Redundancy	(01)
Coding using II extension	(04)
Redundancy	(02)
Reduction in Redundancy	(01)

4. Given the message A to H with respective probabilities 0.2, 0.02, 0.1, 0.12, 0.3, 0.07, 0.04 and 0.15. Construct a binary code using Shannon- Fano encoding procedure and find the efficiency and redundancy. Draw the code tree for the so formed code. **[10]**

	Encoding Code tree	(08) (02)			
5.	Consider a zero memory source with S = {E, O, I, N, S, C, F} appearing with probable {0.4, 0.2, 0.1, 0.1, 0.05, 0.05} respectively. Hence encode 'SEEN CONFESSION' Encoding Coding SEEN CONFESSION				
6.	(a). A CRT terminal is used to enter alphanumeric data into a computer. The CRT is connected to the computer through a voice graded telephone having a usable bandwidth of 3KHz and an output S/N ratio of 10dB. Assume that the terminal has 128 characters and that the data sent from the terminal consist of independent sequences of equiprobable characters. (i). Find the capacity of the channel.				
	(ii). Find the maximum rate at which data can be transmitted from the termin computer without errors.	[04]			
	Channel capacity	(02)			
	Rsmax	(02)			
	(b) Consider the MORSE code, assume a dash is 3 times as long as a dot and has probability of occurrence. Calculate(i). The information in a dot and a dash(ii). The entropy of the code.				
	(iii). The average rate of information if a dot lasts for 10ms and this time is allowed symbols.	d between [06]			
	I_{dot}	(01)			
	I_{dash}	(01)			
	H(S)	(02)			
	\mathcal{R}_{s}	(02)			
7.	(a). State and prove KRAFT Mc-MILLAN inequality. $Prooffor \sum_{j=0}^{K-1} r^{-l_j} \leq 1$	[05] (05)			
	(b). If a binary memory-less source is emitting independent sequence of 0's and probabilities p and 1-p respectively. Plot entropy of the source versus p. Calculation of $\mathcal{H}(S)$ Plot of $\mathcal{H}(S)$ v/s p	d 1's with [05] (03) (02)			

Then the split symbol entropy in given by

$$H' = H \left(h , h_{1}, h_{2} \right) + \frac{2}{12} \left(h_{1} \right) + \frac{2}{12} \left(h_{2} \right) + \frac{2}{12} \left(h_$$

$$P(0) = 0 \times P(0) + 0 \times P(0) \rightarrow 0$$

$$P(0) = 0 \times P(0) + 0 \times P(0) \rightarrow 0$$

$$P(0) = 0 \times P(0) + 0 \times P(0) \rightarrow 0$$

$$P(0) = 0 \times P(0) + 0 \times P(0) \rightarrow 0$$

$$P(0) = \frac{1}{4} P(0) + \frac{3}{8} P(0) \rightarrow 0$$

$$P(0) = \frac{1}{4} P(0) + \frac{3}{8} P(0) + P(0) = 1$$

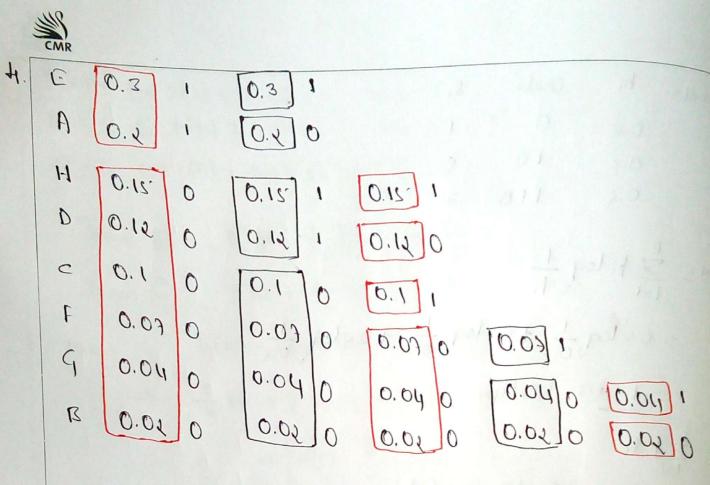
$$P(0) + P(0) + \frac{3}{8} P(0) + P(0) = 1$$

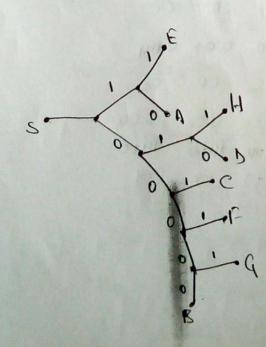
$$P(0) + \frac{3}{8} P(0) + P(0) = 1$$

$$P(0) = \frac{3}{13} \rightarrow 0$$

$$P(0) + \frac{3}{8} P(0) + \frac{3}{13} \rightarrow 0$$

$$P(0) + \frac{3}{8} P(0) + \frac{3}{13} \rightarrow 0$$


$$P(0) + \frac{3}{13} P(0) + \frac{3}{13} \rightarrow 0$$


$$P(0) + \frac{3}{13} P(0) + \frac{3}{13} P(0)$$

$$P(0) + \frac{3}{13} P$$

		Civi
3,	symbols bi code li	1 (10)
	M 0.2. 0	0 (20) 1 (20) 1
		1 210 0 210 1
	C 0.4 110 3	
	e who	1 200 0 000 0
	H(s) = \frac{1}{12} \land \frac{1}{12}	0 10 0 212
	= 0.5 log 1 + 0.2 log 1. + 0.5	$\log \frac{1}{2}$
	= 1. 4825 bildin	2 10 2 200
	= 1.485. 6:48 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	
	= 0.5(1) + 2(0.3) + 0.2(3)	HOLD SO SO WHO
	= 1-9 biclique	
		opthist Dive I
	N3 = 87. 28.1.	Annata WH - At
	Rny = 12.6216	
	I extusion, total no of symbols I	R=9 Nohit 1944
	MM MR MC RM RR RC CM	ch cc
	0.85 0.12 0.10 0.11 0.9 0.06 0.11	0.06 0.94
	DO RW MC CM RR D	c ce cc
Solu Solu	010 0.10 0.09 0	100 0.06 0.04
CM	00 010 011 1000 1010 1100	01,111 00111 0101
- ~	(3) (3) (4) (4)	(5) (7) (2)
	4 = \$ hidi = 3.366/16/14m	
	H(24)= 5.971 P/12/11	
	V(x1) = 55.75.1. D SUC = 11.2.8.1. H(x1)= 5.231 P/12/1712	
	Impact code efficiency in improved) by 1.00%

			ALAP	CMR
ST.	sym	prop	Car prop car pup car prop car prop car prop car	
	E	0.4	0 +0.4 0 +0.4 0 +0.6 1	
	0	0.2	10 - 0.4 10 0.4 10 0.4 10 0.4 0	
	1	0.1	Hot > 0.1 HOLD 0.2 HT 0.2 1112 0.3 105	
	N	0.1	1100 0.1 1100 0.1 11011 0.2 110	
	3	0.1	1100 0.1 100 0.1 100 0.1 100 110 1.00 110 1.10 1100	
	1	20.0		
		0.03	And the Control of th	
	SEE	in co	HEESTION ix encoded as.	
	IIIIO	0 1100	1110 10 1100 1111 0 0011 00 100 100 100	
6.a	ic	channel	capacity	
			C= Rlog (1+2h)	
			= 3000 log (1+10) = 10378.49 = 10378 wiw/sec	
	li (w.k.î.	R= McH <c< th=""><th></th></c<>	
			H = Log (128) = 7 hiw light	
			$\Rightarrow AV < C$	
			JL1 < 10348	
			2, < 1485	
			if data in Iransmitted below their symbol - her	errolan.
BIRE				

0

G.6 W.K.T and so and so and so and so and Palot + bacon = 1 Civen book = 1 book : Adol: + 1/3 hade = 111 > Palo1. = 3/2 & baloob = 4/ 1) 2 dol = log + bdol = 0.415 bill Edash = logy = daish (1) = Poor log Hot Hack log - 0.8113 billigm 6 Py 36501 = (0111) pol 10 10m 10m 10m 30m squeol rate = 4 sqm 100ms = 40 sym scc : R1 = N1 H(2) = (40) (0.8113) N = 34.457 bilibec