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Figure 2.12 shows the three principal sensor arrangements used to transform
illumination energy into digital images. The idea is simple: Incoming energy is

transformed into a voltage by the combination of input electrical power and
sensor material that is responsive to the particular type of energy being de-
tected. The output voltage waveform is the response of the sensor(s), and a dig-
ital quantity is obtained from each sensor by digitizing its response.




1.3.3 Image Acquisition Using Sensor Arrays

Figure 2.12(c) shows individual sensors arranged in the form of a 2-D array.
Numerous electromagnetic and some ultrasonic sensing devices frequently are
arranged in an array format. This is also the predominant arrangement found
in digital cameras. A typical sensor for these cameras is a CCD array, which can
be manufactured with a broad range of sensing properties and can be packaged
in rugged arrays of 4000 < 4000 elements or more. CCD sensors are used wide-
ly in digital cameras and other light sensing instruments. The response of each
sensor is proportional to the integral of the light energy projected onto the sur-
face of the sensor, a property that is used in astronomical and other applica-
tions requiring low noise images. Noise reduction is achieved by letting the
sensor integrate the input light signal over minutes or even hours (we discuss
noise reduction by integration in Chapter 3). Since the sensor array shown in
Fig. 2.15(c) is two dimensional, its key advantage is that a complete image can
be obtained by focusing the energy pattern onto the surface of the array. Mo-
tion obviously is not necessary, as is the case with the sensor arrangements dis-
cussed in the preceding two sections.

The principal manner in which array sensors are used is shown in Fig. 2.15.
This figure shows the energy from an illumination source being reflected from
a scene element, but, as mentioned at the beginning of this section, the energy
also could be transmitted through the scene elements. The first function per-
formed by the imaging system shown in Fig. 2.15(c) is to collect the incoming
energy and focus it onto an image plane. If the illumination is light, the front end
of the imaging system is a lens, which projects the viewed scene onto the lens
focal plane, as Fig. 2.15(d) shows. The sensor array, which is coincident with the
focal plane, produces outputs proportional to the integral of the light received
at each sensor. Digital and analog circuitry sweep these outputs and convert
them to a video signal. which is then digitized by another section of the imag-
ing system. The output is a digital image, as shown diagrammatically in
Fig. 2.15(e). Conversion of an image into digital form is the topic of Section 2.4.




2.3.1 Image Acquisition Using a Single Sensor

Figure 2.12(a) shows the components of a single sensor. Perhaps the most fa-
miliar sensor of this type is the photodiode, which is constructed of silicon ma-
terials and whose output voltage waveform is proportional to light. The use of
a filter in front of a sensor improves selectivity. For example, a green (pass) fil-
ter in front of a light sensor favors light in the green band of the color spec-
trum. As a consequence, the sensor output will be stronger for green light than
for other components in the visible spectrum.

In order to generate a 2-D image using a single sensor, there has to be rela-
tive displacements in both the x- and y-directions between the sensor and the
area to be imaged. Figure 2.13 shows an arrangement used in high-precision
scanning, where a film negative is mounted onto a drum whose mechanical ro-
tation provides displacement in one dimension. The single sensor is mounted on
a lead screw that provides motion in the perpendicular direction. Since me-
chanical motion can be controlled with high precision, this method is an inex-
pensive (but slow) way to obtain high-resolution images. Other similar
mechanical arrangements use a flat bed, with the sensor moving in two linear
directions. These types of mechanical digitizers sometimes are referred to as
microdensitometers.

Another example of imaging with a single sensor places a laser source coin-
cident with the sensor. Moving mirrors are used to control the outgoing beam
in a scanning pattern and to direct the reflected laser signal onto the sensor.
This arrangement also can be used to acquire images using strip and array sen-
sors, which are discussed in the following two sections.
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FIGURE 2.13 Combining a single sensor with motion to generate a 2-ID image.
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Let V be the set of gray-level values used to define adjacency. In a binary
image, V' = {1} if we are referring to adjacency of pixels with value 1. In a gray-
scale image, the idea is the same, but set V typically contains more elements. For
example, in the adjacency of pixels with a range of possible gray-level values 0
to 255, set V could be any subset of these 256 values. We consider three types
of adjacency:

(a) 4-adjacency. Two pixels p and g with values from V are 4-adjacent if g is
in the set Ny(p).

(b) 8-adjacency. Two pixels p and g with values from V are 8-adjacent if g is
in the set Ng( p).

(¢) m-adjacency (mixed adjacency). Two pixels p and g with values from V are
m-adjacent if
(i) gisin Ny(p),or
(ii) g isin Np(p) and the set Ny(p) M Ny(gq) has no pixels whose values
are from V.




1.4.1 Basic Concepts in Sampling and Quantization

The basic idea behind sampling and quantization is illustrated in Fig. 2.16. Fig-
ure 2.16(a) shows a continuous image, f(x, v), that we want to convert to digi-
tal form. An image may be continuous with respect to the x- and y-coordinates,
and also in amplitude. To convert it to digital form, we have to sample the func-
tion in both coordinates and in amplitude. Digitizing the coordinate values is
called sampling. Digitizing the amplitude values is called quanrtization.

The one-dimensional function shown in Fig. 2.16(b) is a plot of amplitude
(gray level) values of the continuous image along the line segment AB in
Fig. 2.16(a). The random variations are due to image noise. To sample this func-
tion, we take equally spaced samples along line AB, as shown in Fig. 2.16(c). The
location of each sample is given by a vertical tick mark in the bottom part of the
figure. The samples are shown as small white squares superimposed on the func-
tion. The set of these discrete locations gives the sampled function. However, the
values of the samples still span (vertically) a continuous range of gray-level val-
ues. In order to form a digital function, the gray-level values also must be con-
verted (gquantized) into discrete quantities. The right side of Fig. 2.16(c) shows
the gray-level scale divided into eight discrete levels, ranging from black to
white. The vertical tick marks indicate the specific value assigned to each of the
eight gray levels. The continuous gray levels are quantized simply by assigning
one of the eight discrete gray levels to each sample. The assignment is made
depending on the vertical proximity of a sample to a vertical tick mark. The
digital samples resulting from both sampling and quantization are shown in
Fig. 2.16(d). Starting at the top of the image and carrying out this procedure
line by line produces a two-dimensional digital image.

Sampling in the manner just described assumes that we have a continuous
image in both coordinate directions as well as in amplitude. In practice, the
method of sampling is determined by the sensor arrangement used to generate
the image. When an image is generated by a single sensing element combined
with mechanical motion, as in Fig. 2.13, the output of the sensor is quantized in
the manner described above. However, sampling is accomplished by selecting
the number of individual mechanical increments at which we activate the sen-
sor to collect data. Mechanical motion can be made very exact so, in principle,
there is almost no limit as to how fine we can sample an image. However, prac-
tical limits are established by imperfections in the optics used to focus on the
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FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image,
used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

sensor an illumination spot that is inconsistent with the fine resolution achiev-
able with mechanical displacements.

When a sensing strip is used for image acquisition, the number of sensors in
the strip establishes the sampling limitations in one image direction. Mechanical
motion in the other direction can be controlled more accurately, but it makes
little sense to try to achieve sampling density in one direction that exceeds the




sampling limits established by the number of sensors in the other. Quantiza-
tion of the sensor outputs completes the process of generating a digital image.

When a sensing array is used for image acquisition, there is no motion and
the number of sensors in the array establishes the limits of sampling in both di-
rections. Quantization of the sensor outputs is as before. Figure 2.17 illustrates
this concept. Figure 2.17(a) shows a continuous image projected onto the plane
of an array sensor. Figure 2.17(b) shows the image after sampling and quanti-
zation. Clearly, the quality of a digital image is determined to a large degree by
the number of samples and discrete gray levels used in sampling and quantiza-
tion. However, as shown in Section 2.4.3, image content is an important con-
sideration in choosing these parameters.

histogram equalization automatical-
ly determines a transformation function that seeks to produce an output image

that has a uniform histogram. When automatic enhancement is desired. this is
a good approach because the results from this technique are predictable and the
method is simple to implement. We show in this section that there are applica-
tions in which attempting to base enhancement on a uniform histogram is not
the best approach. In particular, it is useful sometimes to be able to specify the
shape of the histogram that we wish the processed image to have. The method
used to generate a processed image that has a specified histogram is called
histogram matching or histogram specification.

Development of the method

Let us return for a moment to continuous gray levels r and z (considered
continuous random variables), and let p.(r) and p_(z) denote their corre-
sponding continuos probability density functions. In this notation, r and z denote




the gray levels of the input and output (processed) images, respectively. We can
estimate p,(r) from the given input image, while p_(z) is the specified probability
density function that we wish the output image to have.

Let s be a random variable with the property

s=T(r) = ]Grp,[wj dw (3.3-10)

where w is a dummy variable of integration. We recognize this expression as the
continuos version of histogram equalization given in Eq. (3.3-4). Suppose next
that we define a random variable z with the property

G(z) = [p:(r} dt = s (33-11)

where ris a dummy variable of integration. It then follows from these two equa-
tions that G(z) = T(r) and, therefore, that z must satisfy the condition

z=G'(s) = G'[T(r)] (3.3-12)

The transformation 7'(r) can be obtained from Eq. (3.3-10) once p,(r) has been
estimated from the input image. Similarly, the transformation function &'(z)
can be obtained using Eq. (3.3-11) because p_(z) is given.

Assuming that G™' exists and that it satisfies conditions (a) and (b) in the
previous section, Egs. (3.3-10) through (3.3-12) show that an image with a spec-
ified probability density function can be obtained from an input image by using
the following procedure: (1) Obtain the transformation function T'(r) using
Eq. (3.3-10). (2) Use Eq. (3.3-11) to obtain the transformation function G(z).
(3) Obtain the inverse transformation function G™'. (4) Obtain the output image




by applying Eq. (3.3-12) to all the pixels in the input image. The result of this pro-
cedure will be an image whose gray levels, z. have the specified probability den-
sity function p_(z).

Although the procedure just described is straightforward in principle, it is
seldom possible in practice to obtain analytical expressions for T(r) and for
G . Fortunately, this problem is simplified considerably in the case of discrete
values. The price we pay is the same as in histogram equalization, where only an
approximation to the desired histogram is achievable. In spite of this, however,
some very useful results can be obtained even with crude approximations.

The discrete formulation of Eq. (3.3-10) is given by Eq. (3.3-8), which we re-
peat here for convenience:

k
5 = T(fk} = ;E{fj]

L (33-13)
=S = k=012..L-1
j=o 1t
where n is the total number of pixels in the image, n; is the number of pixels with
gray level r;, and L is the number of discrete gray levels. Similarly, the discrete
formulation of Eq. (3.3-11) is obtained from the given histogram p_(z;),i = 0,

1.2,.... L — 1. and has the form

v =Glz) = Splz)=5s k=012, L—-1 (3314)

As in the continuos case, we are seeking values of z that satisfy this equation.
The variable v, was added here for clarity in the discussion that follows. Final-
ly, the discrete version of Eq. (3.3-12) is given by

=G"'T(n)] k=012..,L-1 (3.3-15)
or, from Eq. (3.3-13),
z,=Gs) k=012..,L—1 (3.3-16)

Equations (3.3-13) through (3.3-16) are the foundation for implementing
histogram matching for digital images. Equation (3.3-13) is a mapping from the
levels in the original image into corresponding levels s, based on the histogram
of the original image, which we compute from the pixels in the image. Equation
(3.3-14) computes a transformation function  from the given histogram p_(z).
Finally, Eq. (3.3-15) or its equivalent, Eq. (3.3-16), gives us (an approximation
of) the desired levels of the image with that histogram. The first two equations
can be implemented easily because all the quantities are known. Implementa-
tion of Eq. (3.3-16) is straightforward, but requires additional explanation.

Implementation

We start by noting the following: (1) Each set of gray levels {r;},{s;},and {z,},
j=0,1,2,..., L — 1,is a one-dimensional array of dimension L x 1.(2) All
mappings from r to s and from s to 7 are simple table lookups between a given




pixel value and these arrays. (3) Each of the elements of these arrays, for ex-
ample, 5, . contains two important pieces of information: The subscript k de-
notes the location of the element in the array, and s denotes the value at that
location. (4) We need to be concerned only with integer pixel values. For ex-
ample. in the case of an 8-bit image, I. = 256 and the elements of each of the
arrays just mentioned are integers between 0 and 255. This implies that we now
work with gray level values in the interval [0, . — 1] instead of the normalized
interval [0, 1] that we used before to simplify the development of histogram
processing techniques.

In order to see how histogram matching actually can be implemented, con-
sider Fig. 3.19(a). ignoring for a moment the connection shown between this
figure and Fig. 3.19(c). Figure 3.19(a) shows a hypothetical discrete transfor-
mation function s = T(r) obtained from a given image. The first gray level in
the image, r;, maps to 5,; the second gray level. r,, maps to s,: the kth level r,
maps to 5, : and so on (the important point here is the ordered correspondence
between these values). Each value s; in the array is precomputed using
Eq. (3.3-13), so the process of mapping simply uses the actual value of a pixel
as an index in an array to determine the corresponding value of s. This process
is particularly easy because we are dealing with integers. For example, the s
mapping for an 8-bit pixel with value 127 would be found in the 128th position
in array {sj} (recall that we start at 0) out of the possible 256 positions. If we
stopped here and mapped the value of each pixel of an input image by the
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method just described, the output would be a histogram-equalized image, ac-
cording to Eq. (3.3-8).

In order to implement histogram matching we have to go one step further.
Figure 3.19(b) is a hypothetical transformation function & obtained from a
given histogram p_(z) by using Eq. (3.3-14). For any z,, this transformation
function yields a corresponding value »,. This mapping is shown by the arrows
in Fig. 3.19(b). Conversely, given any value v,, we would find the correspond-
ing value z, from G™'. In terms of the figure, all this means graphically is that we
would reverse the direction of the arrows to map v, into its corresponding Zz,.
However, we know from the definition in Eq. (3.3-14) that v = s for corre-
sponding subscripts, so we can use exactly this process to find the z, corre-
sponding to any value s; that we computed previously from the equation
5 = T[rk}.This idea is shown in Fig. 3.19(c).

Since we really do not have the z's (recall that finding these values is pre-
cisely the objective of histogram matching), we must resort to some sort of iter-
ative scheme to find 7 from s. The fact that we are dealing with integers makes
this a particularly simple process. Basically, because v, = 5,, we have from
Eq. (3.3-14) that the z's for which we are looking must satisfy the equation
G{zb = 5;,0r (G(z;) — 5;) = 0.Thus, all we have to do to find the value of z,
corresponding to 5, is to iterate on values of 7 such that this equation is satisfied
for k =0,1,2,..., L — 1.This is the same thing as Eq. (3.3-16), except that we
do not have to find the inverse of & because we are going to iterate on z. Since
we are dealing with integers, the closest we can get to satisfying the equation
(G(zi) — s¢) = Ois to let z, = Z for each value of k, where Z is the smallest
integer in the interval [0, L — 1] such that

(G(2) —s)=0 k=012 L1 (3.3-17)

Given a value s, all this means conceptually in terms of Fig. 3.19(c) is that we
would start with Z = 0 and increase it in integer steps until Eq. (3.3-17) is sat-
isfied, at which point we let z; = Z. Repeating this process for all values of k
would yield all the required mappings from s to z. which constitutes the im-
plementation of Eq. (3.3-16). In practice, we would not have to start with 7 = 0
each time because the values of 5, are known to increase monotonically. Thus,
for k = k + 1, we would start with Z = z; and increment in integer values
from there.




Bit-plane slicing

Instead of highlighting gray-level ranges, highlighting the contribution made to
total image appearance by specific bits might be desired. Suppose that each
pixel in an image is represented by 8 bits. Imagine that the image is composed
of eight 1-bit planes, ranging from bit-plane 0 for the least significant bit to bit-
plane 7 for the most significant bit. In terms of 8-bit bytes, plane 0 contains all
the lowest order bits in the bytes comprising the pixels in the image and plane
7 contains all the high-order bits. Figure 3.12 illustrates these ideas, and Fig.3.14
shows the various bit planes for the image shown in Fig. 3.13. Note that the
higher-order bits (especially the top four) contain the majority of the visually sig-
nificant data. The other bit planes contribute to more subtle details in the image.
Separating a digital image into its bit planes is useful for analyzing the relative
importance played by each bit of the image, a process that aids in determining

the adequacy of the number of bits used to quantize each pixel..

In terms of bit-plane extraction for an 8-bit image, it is not difficult to show
that the (binary) image for bit-plane 7 can be obtained by processing the input
image with a thresholding gray-level transformation function that (1) maps all
levels in the image between 0 and 127 to one level (for example, 0): and (2) maps
all levels between 129 and 255 to another (for example, 255). The binary image
for bit-plane 7 in Fig. 3.14 was obtained in just this manner. It is left as an exer-
cise (Problem 3.3) to obtain the gray-level transformation functions that would
yield the other bit planes.

Gray-level slicing

Highlighting a specific range of gray levels in an image often is desired. Appli-
cations include enhancing features such as masses of water in satellite imagery
and enhancing flaws in X-ray images. There are several ways of doing level slic-
ing, but most of them are variations of two basic themes. One approach is to dis-
play a high value for all gray levels in the range of interest and a low value for
all other gray levels. This transformation, shown in Fig. 3.11(a), produces a binary
image. The second approach, based on the transformation shown in Fig. 3.11(b).
brightens the desired range of gray levels but preserves the background and
gray-level tonalities in the image. Figure 3.11(c) shows a gray-scale image, and
Fig. 3.11(d) shows the result of using the transformation in Fig. 3.11(a). Variations
of the two transformations shown in Fig. 3.11 are easy to formulate.




1.2.3 Power-Law Transformations

Power-law transformations have the basic form
§=cr’ (3.2-3)

where ¢ and y are positive constants. Sometimes Eq. (3.2-3) is written as
§ = ¢(r + £)” to account for an offset (that is, a measurable output when the
input is zero). However, offsets typically are an issue of display calibration and
as a result they are normally ignored in Eq. (3.2-3). Plots of s versus r for vari-
ous values of y are shown in Fig. 3.6. As in the case of the log transformation,
power-law curves with fractional values of y map a narrow range of dark input
values into a wider range of output values, with the opposite being true for high-

er values of input levels. Unlike the log function, however, we notice here a
family of possible transformation curves obtained simply by varying y. As ex-
pected, we see in Fig. 3.6 that curves generated with values of ¥y = 1 have ex-
actly the opposite effect as those generated with values of y << 1. Finally, we
note that Eq. (3.2-3) reduces to the identity transformation whenc = y = 1.
A variety of devices used for image capture, printing, and display respond ac-
cording to a power law. By convention, the exponent in the power-law equation
is referred to as gamma [hence our use of this symbol in Eq. (3.2-3)]. The process
used to correct this power-law response phenomena is called gamma correc-
tion. For example, cathode ray tube (CRT) devices have an intensity-to-volt-
age response that is a power function, with exponents varying from
approximately 1.8 to 2.5. With reference to the curve for y = 2.5 in Fig. 3.6, we
see that such display systems would tend to produce images that are darker
than intended. This effect is illustrated in Fig. 3.7. Figure 3.7(a) shows a simple
gray-scale linear wedge input into a CRT monitor. As expected, the output of
the monitor appears darker than the input, as shown in Fig. 3.7(b). Gamma cor-
rection in this case is straightforward. All we need to do is preprocess the input
image before inputting it into the monitor by performing the transformation
s = r'23 = t%% The result is shown in Fig. 3.7(c). When input into the same
monitor, this gamma-corrected input produces an output that is close in ap-
pearance to the original image, as shown in Fig. 3.7(d). A similar analysis would




apply to other imaging devices such as scanners and printers. The only differ-
ence would be the device-dependent value of gamma (Poynton [1996]).

Gamma correction is important if displaying an image accurately on a com-
puter screen is of concern. Images that are not corrected properly can look ei-
ther bleached out, or, what is more likely, too dark. Trying to reproduce colors
accurately also requires some knowledge of gamma correction because varying
the value of gamma correction changes not only the brightness, but also the ra-
tios of red to green to blue. Gamma correction has become increasingly im-
portant in the past few years, as use of digital images for commercial purposes
over the Internet has increased. It is not unusual that images created for a pop-
ular Web site will be viewed by millions of people, the majority of whom will
have different monitors and/or monitor settings. Some computer systems even
have partial gamma correction built in. Also, current image standards do not
contain the value of gamma with which an image was created, thus complicat-
ing the issue further. Given these constraints, a reasonable approach when stor-
ing images in a Web site is to preprocess the images with a gamma that
represents an “average” of the types of monitors and computer systems that
one expects in the open market at any given point in time.

Outputs of these processes generally are images
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Outputs of these processes generally are image attributes




