CMR INSTITUTE OF TECHNOLOGY | USN | | | | | | | | | | | |-----|--|--|--|--|--|--|--|--|--|--| |-----|--|--|--|--|--|--|--|--|--|--| ## Internal Assesment Test - II | Sub: | DSP ALGORITHMS AND ARCHITECTURE | | | | | | | | 10EC751 | |-------|---------------------------------|-----------|---------|------------|----|------|-----|---------|-----------| | Date: | 04 / 11 / 2016 | Duration: | 90 mins | Max Marks: | 50 | Sem: | VII | Branch: | ECE A & C | **Answer ALL Questions** | | (U) | BE | |-------|-----|-----| | Marks | CO | RBT | 1 (a) Describe the operation of the following instructions. [04] CO3 L2 - i) MPY 13, B - ii) ADD *AR3, A - iii) MPY *AR2-, *AR4+0, B - iv) SUBS *AR2-, B - (b) Complete FIG.1 for the instruction: [03] CO3 L3 SUB *AR1+, 14, A | | Before Instruction | After Instruction | |-------------|--------------------|-------------------| | Α | 00 0000 1200 | A | | С | х | c | | SXM | 1 | SXM | | AR1 | 0100 | AR1 | | Data Memory | | | | 0100h | 1500 | 0100h | Fig.1 - (c) The correct instruction which loads accumulator B using indirect addressing [02] CO3 L2 mode (AR3) and fetches the operand after incrementing the address by constant 8h is: - i) LD *+AR3(8), B - ii) LD *AR3(8), B - iii) LD *+AR3(8)%, B - iv) LD AR3*(8), B - 2 (a) Differentiate between direct and indirect addressing modes. [03] CO3 L2 - (b) The instruction for shifting accumulator B by 8 bits towards left and adding it to [02] CO3 L2 accumulator A is _____ - 3 (a) Explain the following assembler directives of TMS320C54XX processors: [04] CO4 L2 - i) .mmregs - ii) .include'xx' - iii) .data - iv) .bss - (b) Which of the following instruction formats given below are correct? [02] CO3 L2 i) LD #1, A ii) LD #ACh, B iii) LD #255, B iv) LD #3Fh, B 4 (a) The initial values of AR1, AR3 and A are 84,81, and 1, respectively. [10] CO3 L3 The values stored in memory location 81,82,83 and 84 are 2,3,4 and 6, respectively. Using pipeline operation table, give the values of registers AR3, AR1, T & accumulator A, after completion of each cycle, for the instructions: ADD *AR3+, A LD *AR1+, T MPY *AR3+, B ADD B, A 5 (a) Describe the steps required to load the accumulator with the contents of data [05] CO3 L3 memory address 310h. Use Table.1. Data Memory Addresses of the TMS320C541 | Pages | Available
Addresses (Decimal) | Available Addresses
(Hexadecimal) | |---------|----------------------------------|--------------------------------------| | 0 | 96 to 127 | 60h to 7Fh | | 1 | 128 to 255 | 80h to FFh | | 2 | 256 to 383 | 100h to 17Fh | | 3 to 38 | 384 to 4991 | 180h to 137Fh | | 39 | 4992 to 5119 | 1380h to 13FFh | ## Table.1 | 6 (a) | What is the advantage of using Q notation? Give an example. | [02] | CO4 | L1 | |-------|---|------|-----|-----| | (b) | Find the Q15 representation for the following numbers | [02] | CO4 | L2 | | | i) 0.560123
ii) - 0.160123 | | | | | (c) | Write an assembly language program for tms320c54xx processors to multiply | [05] | CO4 | L2 | | 7 (a) | two Q15 numbers to produce Q15 result What is an interpolation filter? | [03] | CO4 | L.1 | | (b) | Why are poly-phase sub-filters used? | [03] | CO4 | I 1 | | | Course Outcomes | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |------|--|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO1: | Apply basic signal processing concepts in sampling, discrete sequences, DFT, FFT and digital filters. Explain basic DSP architecture and computational blocks. | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CO2: | Explain bus architecture digital signal processors, memory and data addressing modes, individual architectural blocks and features for external interfacing. | 2 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CO3: | Explain the differences in commercial DSP devices, addressing modes and memory space specifically for TMS320c54xx, program control, instructions, programming and pipeline operations | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CO4: | Use the instruction and code basic algorithms for FIR, IIR filters and FFT. Explain and apply Q-notation. Apply algorithms for overflow and scaling and bit-reversed indexing on TMS320c54xx | 3 | 2 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CO5: | Develop algorithms for accessing interrupts interfacting peripherals, external buses. | 3 | 2 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CO6: | Develop and analyze algorithms for DSP bio-telemetry receivers, speech processing and image processing. | 3 | 2 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cognitive level | KEYWORDS | |-----------------|---| | L1 | List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc. | | L2 | summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend | | L3 | Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover. | | L4 | Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer. | | L5 | Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize. | PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions; PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7-Environment and sustainability; PO8 - Ethics; PO9 - Individual and team work; PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning | CMR
INSTI | ГUTE OF | | USN | | | | | | Ī | 3 | 2/2 | |--------------|---|---------------|------------|-----------------|------------|-----------|---------|----------|---------|--------|-------| | | NOLOGY | | | | F 4 II | | | | | | CMP | | G 1 | DCD ALCODITION | | | Assesment | l est - II | | | G 1 | 1.0 |)E0751 | CIVIK | | Sub: | DSP ALGORITHMS | | I | | 150 | | * *** | Code: | |)EC751 | | | Date: | 04 / 11 / 2016 | Duration: | | Max Marks | | Sem: | VII | Branch | i: E0 | CE A & | C | | | | | SOL | UTION KEY | IAT-2 | | | | 1 | OD | Г | | | | | | | | | | | Marks | OB | | | | | | | | | | | | 1,14111 | СО | RBT | | 1 (a) | Describe the operat | | ollowing | instructions. | | | | | [04] | CO3 | L2 | | | i) B = TREGii) Add the | | contai | ned in d | lata m | emorv | ado | irecc | | | | | | pointed | | | | | iemor y | auc | AT CDD | | | | | | iii) $B = AR2 \times AR4$, $T=AR2-1$, $AR4=AR4+AR0$ | | | | | | | | | | | | (b) | iv) $B = B-UNS(AR2)$, $AR2=AR2-1$ | | | | | | | | | 002 | 1.2 | | (b) | SUB *AR1+, 14, A | | | | | | | | [03] | CO3 | L3 | | | 000 111(1), 1 | / | | | | | | | | | | | | | Before Instr | uction | | Α | fter Inst | ruction | 1 | | | | | | Α | 00 0000 | 1200 | | Α | FF FAC | 1200 | | | | | | | С | | x | | С | | 0 | | | | | | | SXM | | 1 | | SXM | | 1 |] | | | | | | AR1 | | 0100 | | AR1 | | 0101 | | | | | | | Data Memory | | | | | | | | | | | | | 0100h | | 1500 | | 0100h | | 1500 | | | | | | | | | ъ. | | | | | | | | | | | | | F1 | g.1 | | | | | | | | | (c) | LD *+AR3 | (8), B | | | | | | | [02] | CO2 | L2 | | | | | | | | | | | | | | | 2 (a) | Differentiate betwe | | | | | cc | . 1 | , · | [03] | CO2 | L2 | | | Direct addressing u
DP or to SP. The | | | | | | | | | | | | | memory. | onset plus | Dr oi s | or determine | tille act | uai auc | 11622 1 | II uata | | | | | | Indirect addressing | uses the au | xiliary re | gisters to acc | ess mem | ory | | | | | | | (b) | ADD B, 8 | | | | | • | | | [02] | CO3 | L2 | | 3 (a) | | | | | | | | | [04] | CO4 | L2 | | 3 (a) | i) .mmregs | | | | | | | | [04] | CO4 | LZ | | | · - | its the mem | nory map | ped register | s to be 1 | eferred | using | names | S | | | | | | SP etc. | - J F | F | | | 2 | , | | | | | | ii) .include'x | | | | | | | | | | | | | | | | nsert a list o | finstruc | tions in | the fi | le xx to | | | | | | iii) .data | serted for as | sembly | | | | | | | | | | | , | mble into da | ta memor | v area | | | | | | | | | | iv) .bss | | | . j | | | | | | | | | | | • | Used to | reserve | a block | of men | nory which | ch is ur | initializ | zed | | | | | |-------|-----------------------------------|--|--|-------------------------|------------------------|---------|-------------------------------|--------------------|-----------------|-----|---------|------|-----|----| | (b) | i)
ii)
iii) | LD #1
LD #A
LD #2 | followin , A = Ch, B 55, B Fh, B | CORRI
= INC
= COR | ECT
CORREC
RRECT | | given belo | ow are | correct? | | | [02] | CO3 | L2 | | 4 (a) | location Using accum ADD ** LD ** | on 81,82
pipelin
ulator A
*AR3+
AR1+,
*AR3+ | 2,83,84 a
te opera
A, after c
, A | are 2,3,4
tion tab | ,6.
le, give | the v | 31,1 & thalues of le, for the | registe | rs AR3 | | - | [10] | CO3 | L3 | | | Cycl
e | Pre-
fetch | Fetch | Deco
de | Acces
s | Read | Exec &
Write | AR3 | AR1 | A | T | | | | | | 1 | ADD | | | | | | 81 | 84 | 1 | Х | | | | | | 2 | LD | ADD | | | | | 81 | 84 | 1 | Х | | | | | | 3 | MPY | LD | ADD | | | | 81 | 84 | 1 | Х | | | | | | 4 | ADD | MPY | LD | ADD | | | 82 | 84 | 1 | Х | | | | | | 5 | | ADD | MPY | LD | ADD | | 82 | 84 | 1 | Х | | | | | | 6 | | | ADD | MPY | LD | ADD | 83 | 85 | 03 | 06 | | | | | | 7 | | | | ADD | MPY | LD | 83 | 85 | 03 | 06 | | | | | | 8 | | | | | ADD | MPY | 83 | 85 | 03 | 06 | | | | | | 9 | | | | | | ADD | 83 | 85 | 15h | 06 | | | | | | memory | y addres | ss 310h.
Data N | Use FIC | 3.2.
Addres | | cumulator | 320C54 | 1 | | of data | [05] | CO3 | L3 | | | Pag | ges | | Availab
esses (D | | | | ible Ad
exadeci | dresses
mal) | · | | | | | | | 0 96 to 127 | | | \top | | 0h to 7 | | \neg | | | | | | | | | 1 | | 128 to 255 | | | 8 | 0h to F | Fh | | | | | | | | | 2 | | - | 256 to 3 | 83 | | 10 | 0h to 1 | 7Fh | | | | | | | | 3 to | 38 | 3 | 84 to 49 | 91 | | 180 | Oh to 13 | 37Fh | | | | | | | | 39 |) | 4 | 992 to 5 | 119 | | 138 | 0h to 1 | 3FFh | Fig.2 | | | | |-------|--|-------|------|-----| | | To calculate the page number we need to divide 310h (784) by 80h (128) and round down to the nearest whole number. This gives us page number 6, which starts at address 718 (300h). We then add the offset supplied by the operand. LD #6, DP ; Set data memory page pointer to page 6. | | | | | | This gives us access to data memory addresses 300h to 37Fh. | | | | | | LD 10h, A ; Load accumulator A with the contents of data memory address $300h + 10h = 310h$. | | | | | 6 (a) | What is the advantage of using Q notation? Give an example. | [02] | CO4 | L1 | | | | | | | | (b) | Find the Q15 representation for the following numbers | [02] | CO4 | L2 | | | i) 0.560123 | | | | | | a. 0.560123x32768 = 18354 = 47B2h
ii) - 0.160123 | | | | | | a. 0.160123
a. $0.160123 \times 32768 = 5246 = 147$ Eh | | | | | | b. 2's complement of 147Eh = EB82 | | | | | (c) | Write an assembly language program for tms320c54xx processors to multiply | [05] | CO4 | L2 | | | two Q15 numbers to produce Q15 result | [00] | | | | | | | | | | | .mmregs | | | | | | .data | | | | | | N1 .word 4000h | | | | | | N2 .word 2000h | | | | | | N1xN2 .space 10h | | | | | | .text | | | | | | .ref .global_main | | | | | | .sect ".vectors" | | | | | | RESET b .global_main | | | | | | Nop | | | | | | Nop | | | | | | global_main: | | | | | | stm #N1,AR2 | | | | | | ld *AR2+,T | | | | | | mpyr *AR2+,A | | | | | | sth A,1,*AR2 | | | | | | nop | | | | | | nop | | | | | 7 (-) | end | F0.23 | 00.1 | T 4 | | 7 (a) | What is an interpolation filter? | [03] | CO4 | L1 | | | An interpolation filter is used to increase the sampling rate. | | | | | | The interpolation process involves inserting samples between the incoming | | | | | | samples to create additional samples to increase the sampling rate for the output. | | | | | | One way to implement an interpolation filter is to first insert zeros between | | | | | | samples of the original sample sequence. The zero-inserted sequence is then passed through an appropriate low-pass digital FIR filter to generate the | | | | | | interpolated sequence. | | | | | | interpolated sequence. | | | | | (b) | Why are poly-phase sub-filters used? | [03] | CO4 | L1 | |-----|---|------|-----|----| | | In interpolation filter there are many multiplies in which one of the multiplying | | | | | | elements is zero. Such multiplies need not be included in computation if the | | | | | | computation is rearranged to take advantage of this fact. One such scheme, based | | | | | | on generating what are called polyphase subfilters, is available for reducing the | | | | | | computation | | | | | | | | | | | Course Outcomes | | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | |-----------------|--|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------| | CO1: | Apply basic signal processing concepts in sampling, discrete sequences, DFT, FFT and digital filters. Explain basic DSP architecture and computational blocks. | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CO2: | Explain bus architecture digital signal processors, memory and data addressing modes, individual architectural blocks and features for external interfacing. | 2 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CO3: | Explain the differences in commercial DSP devices, addressing modes and memory space specifically for TMS320c54xx, program control, instructions, programming and pipeline operations | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CO4: | Use the instruction and code basic algorithms for FIR, IIR filters and FFT. Explain and apply Q-notation. Apply algorithms for overflow and scaling and bit-reversed indexing on TMS320c54xx | 3 | 2 | 3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CO5: | Develop algorithms for accessing interrupts interfacting peripherals, external buses. | 3 | 2 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | CO6: | Develop and analyze algorithms for DSP bio-telemetry receivers, speech processing and image processing. | 3 | 2 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Cognitive level | KEYWORDS | |-----------------|---| | L1 | List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc. | | L2 | summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend | | L3 | Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover. | | L4 | Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer. | | L5 | Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize. | PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions; PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7-Environment and sustainability; PO8 - Ethics; PO9 - Individual and team work; PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning