CMR INSTITUTE OF TECHNOLOGY

LICNI					
USIN					

Internal Assesment Test - II

Sub:	Digital Image Processing Code:							10EC	10EC763		
Date:	4/11/2016	Duration:	90 mins	Max Marks:	50	Sem:	VII	Branch		C(A,B,	
		A	nswer An	y FIVE FULL (Quest	ions					
									Marks		BE RBT
1 Calculate Haar Transform for n=2 and discuss the properties of Haar Transform. [10]								CO3	L3		
2	2 Explain the following properties of 2D DFT.a) Translation b) Distributivity c) Separability d) Conjugate Symmetry							[10]	CO3	L2	
	For the given ortho and basis images. $A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$	gonal matrix	x A and	•	_	•	•	d image	[4]	CO3	L3
	(b) Define slant transform. Make 4x4 slant transform matrix and show that it [6 orthogonal.							[6]	CO3	L1	
4									CO3	L1	
5	5 Explain homomorphic filters in image enhancement with neat block diagram. [10]							[10]	CO4	L4	
6	Explain smoothing a	and sharpeni	ng filters	in frequency of	loma	in.			[10]	CO4	L4
7	Discuss the charac domain. Explain ho		_			-	ey and	spatial	[10]	CO4	L4

	Course Outcomes	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12
CO1:	Describe the basic elements and applications of image processing, Analyze image sampling and quantization requirements and implications	3	-	-	-	-	-	1	-	-	-	-	-
CO2:	Apply Gray level transformations for Image enhancement, histogram equalization for image enhancement, Use and implement order-statistics image enhancement methods	3	-	-	-	-	-	1	-	-	-	-	-
CO3:	Acquire knowledge of solving problems related to different types of image transforms and applications.	3	-	_	-	-	-	1	-	_	-	-	-
CO4:	Design and implement two-dimensional spatial filters and frequency domain filter for image enhancement	3	-	-	-	-	-	1	-	-	-	-	-
CO5:	Model the image restoration problem in both time and frequency domains, Recognise and describe the image degradation models and restoration.	3	-	-	-	-	-	1	-	-	-	-	-
CO6:	Describe the representation of colours in digital colour images and basic concepts of colour image processing.	3	-	-	-	-	-	1	-	-	-	-	-

Cognitive level	KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions; PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7-Environment and sustainability; PO8 - Ethics; PO9 - Individual and team work; PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

Scheme & solutions Digital Image Processing (10EC763)

1)
$$N=2^{n}$$
, $0 \le k \le N-1$, $0 \le k \le N-1$
 $P=0 = > q=0,1$
 $P \ne 0 = > 1 \le q \le 2^{n}$
 $P \ne 0 = > 1 \le q \le 2^{n}$
 $P \ne 0 = > 1 \le q \le 2^{n}$
 $P \ne 0 = > 1 \le q \le 2^{n}$
 $P \ne 0 = > 1 \le q \le 2^{n}$

$$h_{R}(x) = h_{P_{1}Q}(x) = \frac{1}{1N} \begin{cases} 2^{p_{2}}, & \frac{q-1}{2P} \leq x \leq q-1/2\\ -2^{p_{2}}, & \frac{q-1}{2P} \leq x \leq q/2P \end{cases}$$

K	0	l	a	3	
P	0	O	1	1	_
2	0	ļ	1	2	

$$a^{rd} = h(n) = h_{0,1}(x) = \frac{1}{a} \begin{cases} 01, & 0 \leq x \leq 42 \\ -1, & 4 \leq x \leq 1 \end{cases}$$

ho,
$$1(0/4)$$
 = ho, $1(0)$ = 1
ho, $1(2/4)$ = 1
ho, $1(2/4)$ = ho, $1(2/2)$ = -1
ho, $1(3/4)$ = -1

DFT [
$$\alpha$$
(m-mo, n-no)] = $\sum_{m=0}^{N-1} \alpha$ (mx+ln).

Proof

DFT [upmin)+u2cmin) =
$$\frac{N^4}{m_{1n=0}}$$
 [upmin)+u2cmin) = $\frac{N^4}{N}$ (mh+ln)

cc) Soporability

VCKM = SE UCMIN) = JOHN = JOHN P

= Not [Summing of N n] = 3 att mk

let = ucmin) = 12tt nl = v(m, l)

=> VCK, N = N-1 VCM, N = JATT MIC.

2) DFT of any dimension can be performed by applying a 10 transform on each dimension.

ed Conjugate symmetry.

If DFT of ucmin) = VCKID, then DFT of ucmin) is real.

or VCKID = V*C-1c,-D) = V*C-1c, ND)

or VCKID = V*C-1c,-D) = V*C-1c, ND)

Proof

V(CK,D) = = = = = ucmin) = jatt mk = jatt nl

Ack,D = = = = ucmin) e n min=0

=>VCx?)== 12-101-27 = -(2,0)<=

30) NXN slant transform is given by the -

$$S_{n=1} = \begin{cases} 1 & 0 & 11 & 0 & 0 \\ a_{n} & b_{n} & 0 & |-a_{n}| & b_{n} \\ 0 & |T_{N|_{2}-2}| & 0 & |T_{N|_{2}-2}| \\ 0 & |-b_{n}| & a_{n} & 0 & |b_{n}| & a_{n} \\ 0 & |T_{N|_{2}-2}| & 0 & |T_{N|_{2}-2}| \\ 0 & |T_{N|_{2}-2}| & |T_{N|_{2}$$

$$b_0 = (1 + 4a_0)$$
, $a_1 = 1$.

Using these,
$$S_{2} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 \\ 315 & 175 & -175 & -3175 \\ 1 & -1 & -1 & 1 \\ 175 & -315 & 3155 - 1755 \end{bmatrix}$$

4)
$$CCX_{1}n^{3} = \begin{cases} \frac{1}{1} & K=0, & 0 \leq n \leq N-1 \\ \frac{1}{2}N & (0 \leq n \leq N-1) \end{cases}$$

V(K)= XCK) Euch) cos [Tran+NK] X(0)= Y5N XCE)=FA, IShSN-1. $\overline{u(n)} = u(2n+1) \qquad 0 \leq n \leq \frac{N}{2} - 1$ VCK) = XCK) = ucan) cos fircanti) k = ucanti) cos fircanti) cos fircanti (cos fircanti) cos fircanti) cos fircanti (cos fircanti (cos fircanti) cos fircanti (cos fircanti =xcx) (= u(n) cos (t(4n+1) k) + = u(n-n-1) cos (t(4n+3) k) | and term \rightarrow let n=N-n-1 \rightarrow n=N-n-1.

No n=0 let n=N-n-1 \rightarrow n=1 \rightarrow n=1=XCK) \(\frac{\pi(4n+1)k}{2n}\) + \(\frac{\pi(2-4n+1)k}{2n}\) = XCE) \(\frac{1}{2} \tau \tau \rangle \rangle \frac{1}{2} \tau \rangle \rangle \frac{1}{2} \tau \rangle \rangle \frac{1}{2} \tau \rangle \rangle \frac{1}{2} \tau \rangle = orce) Syan eos (Tranti) E = Re ack) = 2N Such = 20th nk = Re [XCK) Wo DFT [Tim]]

$$A = \frac{1}{62}\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$U = \begin{bmatrix} 1 & 7 \\ 8 & 4 \end{bmatrix}$$

$$V = AUA^{T} = \frac{1}{2}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 7 \\ 8 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$= \frac{1}{2}\begin{bmatrix} 9 & 6 \\ -7 & -2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$A^{*}_{010} = a^{*}_{0}a^{*}_{0}^{T} = \frac{1}{2}\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$A^{*}_{011} = a^{*}_{0}a^{*}_{0}^{T} = \frac{1}{2}\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

$$A^{*}_{011} = a^{*}_{0}a^{*}_{0}^{T} = \frac{1}{2}\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

$$A^{*}_{011} = a^{*}_{0}a^{*}_{0}^{T} = \frac{1}{2}\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = \frac{1}{2}\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

Scheme	STAL
(10ec763)	

1)	Equations Properties -	(4M) (3M) (3M)
2)	Properties —	(2.5 ×4M)
Z(a)	Pravoformal large Books larges	(2M) (2M)
S(P)	Equations Matrix Orthogonality check	(2M) (2M)
4)	Equations — Degivation —	- (m)
5)	Block oliogram Desirbation	(4M) (6M)
6)	Smoothing + Shaapaning - Frequency & Spatial domain	(6+5M