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1. a) Explain with neat diagrams, i) User threads   ii) Kernel level threads.                                                                             

(8M) 

Kernel-Level Threads 

A kernel-level thread is implemented by the kernel. Hence creation and termination of kernel-level threads, and 

checking of their status, is performed through system calls. Figure 3.14 shows a schematic of how the kernel 

handles kernel-level threads. When a process makes a create_thread system call, the kernel creates a thread, 

assigns an id to it, and allocates a thread control block (TCB). The TCB contains a pointer to the PCB of the 

parent process of the thread. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Scheduling of kernel-level threads. 
 
 
TCB to check whether the selected thread belongs to a different process than the interrupted thread. If so, it saves 

the context of the process to which the interrupted thread belongs, and loads the context of the process to which 

the selected thread belongs. It then dispatches the selected thread. However, actions to save and load the process 

context are skipped if both threads belong to the same process. This feature reduces the switching overhead, 

hence switching between kernel-level threads of a process could be as much as an order of magnitude faster, 

i.e., 10 times faster, than switching between processes. 

 

Advantages and Disadvantages of Kernel-Level Threads 
 
A kernel-level thread is like a process except that it has a smaller amount of state information. This similarity is 

convenient for programmers—programming for threads is no different from programming for processes. In a 

multiprocessor system, kernel-level threads provide parallelism, as many threads belonging to a process can be 

scheduled simultaneously, which is not possible with the user-level threads described in the next section, so it 

provides better computation speedup than user-level threads. 

 

User-Level Threads  
 
User-level threads are implemented by a thread library, which is linked to the code of  
 



a process. The library sets up the thread implementation arrangement shown in Figure without involving the 

kernel, and itself interleaves operation of threads in the process. Thus, the kernel is not aware of presence of 

user-level threads in a process; it sees only the process. Most OSs implement the pthreads application program 

interface provided in the IEEE POSIX standard in this manner. 

 

Scheduling of User-Level Threads 
 
Figure below is a schematic diagram of scheduling of user-level threads. The thread library code is a part of each 

process. It performs ―scheduling‖ to select a thread, and organizes its execution. We view this operation as 

―mapping‖ of the TCB of the selected thread into the  
PCB of the process. 
 
 
The thread library uses information in the TCBs to decide which thread should operate at any time. To ―dispatch‖ 

the thread, the CPU state of the thread should become the CPU state of the process, and the process stack 

pointer should point to the thread‘s stack. Since the thread library is a part of a process, the CPU is in the user 

mode. Hence a thread cannot be dispatched by loading new information into the PSW; the thread library has to 

use nonprivileged instructions to change PSW contents. Accordingly, it loads the address of the thread‘s stack 

into the stack address register, obtains the address contained in the program counter (PC) field of the thread‘s 

CPU state found in its TCB, and executes a branch instruction to transfer control to the instruction which has 

this address. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scheduling of user-level threads. 
 
Advantages and Disadvantages of User-Level Threads 
 
Thread synchronization and scheduling is implemented by the thread library. This arrangement avoids the 

overhead of a system call for synchronization between threads, so the thread switching overhead could be as 

much as an order of magnitude smaller than in kernel-level threads. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                    Actions of the thread library (N,R,B indicate running, ready, and blocked). 
 
 
This arrangement also enables each process to use a scheduling policy that best suits its nature. A process 

implementing a real-time application may use priority-based scheduling of its threads to meet its response 

requirements, whereas a process implementing a multithreaded server may perform round-robin scheduling of 

its threads. However, performance of an application would depend on whether scheduling of user-level threads 

performed by the thread library is compatible with scheduling of processes performed by the kernel. 
 
For example, round-robin scheduling in the thread library would be compatible with either round-robin scheduling 

or priority-based scheduling in the kernel, whereas priority-based scheduling would be compatible only with 

priority-based scheduling in the kernel. 

 

b) Page tables are stored in a memory that has an access time of 100ns. The TLB can hold 64page table 

entries   and has an access time of 10ns. During operation of a process, it is found that 85% of the time a 

required page table entry exists in the TLB and only 2% of the references lead to page faults. The 

average time for page replacement is 2ms. Compute the effective memory access time.                                                                                          

(2M)    

 

E.M.A.T=pr2 * (tTLB + tmem) + (pr1-pr2) (tTLB +2* tmem)+(1- pr1)( tTLB + tmem + tphf+ tTLB +2* tmem) 

                   = 0.85*(10+100)+(0.98-0.85)(10+2*100)+(1-0.98)(10+100+2000000+10+2*100)ns 

                   = 40.01µs 

3. a) Explain with a neat diagram, the different states and transitions of process in UNIX Operating system.  

(6M) 
 
A process in the running state is put in the ready state the moment its execution is interrupted. A system process 

then handles the event that caused the interrupt. If the running process had itself caused a software interrupt by 

executing an <SI_instrn>, its state may further change to blocked if its request cannot be granted immediately. 

In this model a user process executes only user code; it does not need any special privileges. A system process 

may have to use privileged instructions like I/O initiation and setting of memory protection information, so the 



system process executes with the CPU in the kernel mode. Processes behave differently in the Unix model. 

When a process makes a system call, the process itself proceeds to execute the kernel code meant to handle the 

system call. To ensure that it has the necessary privileges, it needs to execute with the CPU in the kernel mode. 

A mode change is thus necessary every time a system call is made. The opposite mode change is necessary after 

processing a system call. Similar mode changes are needed when a process starts executing the interrupt 

servicing code in the kernel because of an interrupt, and when it returns after servicing an interrupt.  

 

The Unix kernel code is made reentrant so that many processes can execute it concurrently. This feature takes care 

of the situation where a process gets blocked while executing kernel code, e.g., when it makes a system call to 

initiate an I/O operation, or makes a request that cannot be granted immediately. To ensure reentrancy of code, 

every process executing the kernel code must use its own kernel stack. This stack contains the history of 

function invocations since the time the process entered the kernel code. If another process also enters the kernel 

code, the history of its function invocations will be maintained on its own kernel stack. Thus, their operation 

would not interfere. In principle, the kernel stack of a process need not be distinct from its user stack; however, 

distinct stacks are used in practice because most computer architectures use different stacks when the CPU is in 

the kernel and user modes. Unix uses two distinct running states. These states are called user running and kernel 

running states. A user process executes user code while in the user running state, and kernel code while in the 

kernel running state. It makes the transition from user running to kernel running when it makes a system call, or 

when an interrupt occurs. It may get blocked while in the kernel running state because of an I/O operation or 

non availability of a resource. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.19 Process state transitions in Unix. 

b) List the different types of process interaction and explain them in brief.                    (4M) 

 

 

 

 

 

 



4. Explain the important concepts in the operation of demand paging.                  (10M) 

Demand Paging Preliminaries 

  
To implement demand paging, a copy of the entire logical address space of a process is maintained on a disk. The 

disk area used to store this copy is called the swap space of a process. While initiating a process, the virtual 
memory manager allocates the swap space for the process and copies its code and data into the swap space. 
During operation of the process, the virtual memory manager is alerted when the process wishes to use some 
data item or instruction that is located in a page that is not present in memory. It now loads the page from the 
swap space into memory. This operation is called a page-in operation. When the virtual memory manager 
decides to remove a page from memory, the page is copied back into the swap space of the process to which it 
belongs if the page was modified since the last time it was loaded in memory. This operation is called a page-
out operation. 

 
This way the swap space of a process contains an up-to-date copy of every page of the process that is not present 

in memory. A page replacement operation is one that loads a page into a page frame that previously contained 
another page. 

 
It may involve a page-out operation if the previous page was modified while it occupied the page frame, and 

involves a page-in operation to load the new page. 
 
Page Table The page table for a process facilitates implementation of address translation, demand loading, and 

page replacement operations. Figure 5.3 shows the format of a page table entry. The valid bit field contains a 
Boolean value to indicate whether the page exists in  

memory. We use the convention that 1 indicates ―resident in memory‖ and 0 indicates ―not resident in memory.‖ 
The page frame# field, which was described earlier, facilitates address translation. The misc info field is divided 
into four subfields. Information in the prot info field is used for protecting contents of the page against 
interference. It indicates whether the process can read or write data in the page or execute instructions in it. ref 
info contains information concerning references made to the page while it is in memory. 

 

The modified bit indicates whether the page has been modified, i.e., whether it is dirty. It is used to decide whether 
a page-out operation is needed while replacing the page. The other info field contains information such as the 
address of the disk block in the swap space where a copy of the page is maintained. 

Page Faults and Demand Loading of Pages 

Table below summarizes steps in address translation by the MMU. While performing address translation for a 

logical address (pi , bi), theMMUchecks the valid bit of the page table entry of pi 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4 Demand loading of a page.  
. 

 
If the bit indicates that pi is not present in memory, the MMU raises an interrupt called a missing page interrupt or 

a page fault, which is a program interrupt (see Section 2.2.5). The interrupt servicing routine for program 
interrupts finds that the interrupt was caused by a page fault, so it invokes the virtual memory manager with the 
page number that caused the page fault, i.e., pi , as a parameter. The virtual memory manager now loads page pi 
in memory and updates its page table entry. Thus, the MMU and the virtual memory manager interact to decide 
when a page of a process should be loaded in memory. 

 

Figure 5.4 is an overview of the virtual memory manager‘s actions in demand loading of a page. The broken 
arrows indicate actions of the MMU, whereas firm arrows indicate accesses to the data structures, memory, and 
the disk by the virtual memory manager when a page fault occurs. The numbers in circles indicate the steps in 
address translation, raising, and handling of the page fault—Steps 1–3 were described earlier in Table 12.2. 
Process P2 of Figure 5.2 is in operation. While translating the logical address (3, 682), the MMU raises a page 
fault because the valid bit of page 3‘s entry is 0. 

 



Page-in, Page-out, and Page Replacement Operations 

 

Figure 5.4 showed how a page-in operation is performed for a required page when a page fault occurs in a process 
and a free page frame is available in memory. If no page frame is free, the virtual memory manager performs a 
page replacement operation to replace one of the pages existing in memory with the page whose reference 
caused the page fault. It is performed as follows: The virtual memory manager uses a page replacement 
algorithm to select one of the pages currently in memory for replacement, accesses the page table entry of the 
selected page to mark it as ―not present‖ in memory, and initiates a page-out operation for it if the modified bit 
of its page table entry indicates that it is a dirty page. 

 

In the next step, the virtual memory manager initiates a page-in operation to load the required page into the page 

frame that was occupied by the selected page. After the page-in operation completes, it updates the page table 
entry of the page to record the frame number of the page frame, marks the page as ―present,‖ and makes 

provision to resume operation of the process. The process now reexecutes its current instruction. This time, the 

address translation for the logical address in the current instruction completes without a page fault. The page-in 
and page-out operations required to implement demand paging constitute page I/O; we use the termpage traffic 

to describe movement of pages in and out of memory. Note that page I/O is distinct from I/O operations 
performed by processes,whichwe will call programI/O. The state of a process that encounters a page fault is 

changed to blocked until the required page is loaded in memory, and so its performance suffers because of a 
page fault. The kernel can switch theCPU to another process to safeguard system performance. 

 
Effective Memory Access Time The effective memory access time for a process in demand paging is the average 

memory access time experienced by the process. 

 
It depends on two factors: time consumed by the MMU in performing address translation, and the average time 

consumed by the virtual memory manager in handling a page fault. We use the following notation to compute 
the effective memory access time: 

 
pr1 probability that a page exists in memory  
tmem  memory access time 

tpfh    time overhead of page fault handling 

 

pr1 is called the memory hit ratio. tpfh is a few orders of magnitude larger than tmem because it involves disk 
I/O—one disk I/O operation is required if only a page-in operation is sufficient, and two disk I/O operations are 
required if a page replacement is necessary. 

 

A process‘s page table exists in memory when the process is in operation. Hence, accessing an operand with the 
logical address (pi , bi ) consumes two memory cycles if page pi exists in memory—one to access the page table 
entry of pi for address translation, and the other to access the operand in memory using the effective memory 
address of (pi , bi ). If the page is not present in memory, a page fault is raised after referencing the page table 
entry of pi , i.e., after one memory cycle. 

 

Accordingly, the effective memory access time is as follows: 

 

Effective memory access time = pr1 × 2 × tmem + (1 − pr1) × (tmem + tpfh + 2 × tmem)  
 



The effective memory access time can be improved by reducing the number of page faults. 

 

 

Address Translation and Page Fault Generation 

 
The MMU follows the steps of Table 5.2 to perform address translation. For a logical address (pi , bi ), it accesses 

the page table entry of pi by using pi ×lPT_entry as an offset into the page table, where lPT_entry is the length 
of a page table entry. 

 
lPT_entry is typically a power of 2, so pi ×lPT_entry can be computed efficiently by shifting the value of pi by a 

few bits. 

 

Address Translation Buffers A reference to the page table during address translation consumes one memory 
cycle because the page table is stored in memory. The translation look-aside buffer (TLB) is a small and fast 

associative memory that is used to eliminate the reference to the page table, thus speeding up address 
translation. The TLB contains entries of the form (page #, page frame #, protection info) for a few recently 

accessed pages of a program that are in memory. During address translation of a logical address (pi , bi ), the 
TLB hardware searches for an entry of page pi . If an entry is found, the page frame # from the entry is used to 

complete address translation for the logical address (pi , bi ). Figure 5.8 illustrates operation of the TLB. The 
arrows marked 2_ and 3_ indicate TLB lookup. The TLB contains entries for pages 1 and 2 of process P2. If pi 

is either 1 or 2, the TLB lookup scores a hit, so the MMU takes the page frame number from the TLB and 

completes address translation. A TLB miss occurs if pi is some other page, hence theMMUaccesses the page 
table and completes the address translation if page pi is present in memory; otherwise, it generates a page fault, 

which activates the virtual memory manager to load pi in memory. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Address translation using the translation look-aside buffer and the page table. 

 
6. a) Explain how TLB is used to provide h/w support for paging.  (5M) 

 
The MMU follows the steps of Table 5.2 to perform address translation. For a logical address (pi , bi ), it accesses 

the page table entry of pi by using pi ×lPT_entry as an offset into the page table, where lPT_entry is the length 
of a page table entry. 

 
lPT_entry is typically a power of 2, so pi ×lPT_entry can be computed efficiently by shifting the value of pi by a 



few bits. 

 

Address Translation Buffers A reference to the page table during address translation consumes one memory 
cycle because the page table is stored in memory. The translation look-aside buffer (TLB) is a small and fast 

associative memory that is used to eliminate the reference to the page table, thus speeding up address 
translation. The TLB contains entries of the form (page #, page frame #, protection info) for a few recently 

accessed pages of a program that are in memory. During address translation of a logical address (pi , bi ), the 
TLB hardware searches for an entry of page pi . If an entry is found, the page frame # from the entry is used to 

complete address translation for the logical address (pi , bi ). Figure 5.8 illustrates operation of the TLB. The 
arrows marked 2_ and 3_ indicate TLB lookup. The TLB contains entries for pages 1 and 2 of process P2. If pi 

is either 1 or 2, the TLB lookup scores a hit, so the MMU takes the page frame number from the TLB and 
completes address translation. A TLB miss occurs if pi is some other page, hence theMMUaccesses the page 

table and completes the address translation if page pi is present in memory; otherwise, it generates a page fault, 
which activates the virtual memory manager to load pi in memory. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

b) Explain inverted page tables.                                                                          (5M) 

• A process with a large address space requires a large page table, which occupies too much memory 

• Solutions: 

– Inverted page table 

• Describes contents of each page frame 

– Size governed by size of memory 

– Independent of number and sizes of processes 

– Contains pairs of the form (program id, page #) 

• Con: information about a page must be searched 

 

 

 



 
 

7. a) Compare: i) Preemptive and non-preemptive scheduling ii) Long term and short term schedulers.            (6M) 

In preemptive scheduling, the server can be switched to the processing of a newrequest before completing the 
current request. The preempted request is put back into the list of pending requests (see Figure 7.1). Its 
servicing is resumed when it is scheduled again. Thus, a request might have to be scheduled many times before 
it completed. This feature causes a larger scheduling overhead than when nonpreemptive scheduling is used. 

 

The three preemptive scheduling policies are:  
• Round-robin scheduling with time-slicing (RR)  
• Least completed next (LCN) scheduling   
• Shortest time to go (STG) scheduling  

 
The RR scheduling policy shares the CPU among admitted requests by servicing them in turn. The other two 

policies take into account the CPU time required by a request or the CPU time consumed by it while making 
their scheduling decisions 

 
 



In nonpreemptive scheduling, a server always services a scheduled request to completion. Thus, scheduling is 
performed only when servicing of a previously scheduled request is completed and so preemption of a request 
as shown in Figure 7.1 never occurs. Nonpreemptive scheduling is attractive because of its simplicity—the 
scheduler does not have to distinguish between an unserviced request and a partially serviced one. Since a 
request is never preempted, the scheduler‘s only function in improving user service or system performance is 
reordering of requests. The three nonpreemptive scheduling policies are: 

 

• First-come, first-served (FCFS) scheduling   
• Shortest request next (SRN) scheduling  

• Highest response ratio next (HRN) scheduling  
 

 

 
Long-Term Scheduling The long-term scheduler may defer admission of a request for two reasons: it may not be 

able to allocate sufficient resources like kernel data structures or I/O devices to a request when it arrives, or it 
may find that admission of a request would affect system performance in some way; e.g., if the system currently 
contained a large number of CPU-bound requests, the scheduler might defer admission of a new CPU-bound 
request, but it might admit a new I/O-bound request right away. 

 

Long-term scheduling was used in the 1960s and 1970s for job scheduling because computer systems had limited 
resources, so a long-term scheduler was required to decide whether a process could be initiated at the present 
time. It continues to be important in operating systems where resources are limited. It is also used in systems 
where requests have deadlines, or a set of requests are repeated with a known periodicity, to decide when a 
process should be initiated to meet response requirements of applications. Long-term scheduling is not relevant 
in other operating systems. 

 
Short-Term Scheduling Short-term scheduling is concerned with effective use of the CPU. It selects one process 

from a list of ready processes and hands it to the dispatching mechanism. It may also decide how long the 
process should be allowed to use the CPU and instruct the kernel to produce a timer interrupt accordingly. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



b) Explain the process schedule with a neat schematic diagram.                                                                    (4M) 
 
Scheduling, very generally, is the activity of selecting the next request to be serviced by a server. Figure 7.1 is a 

schematic diagram of scheduling. The scheduler actively considers a list of pending requests for servicing and 
selects one of them. The server services the request selected by the scheduler. This request leaves the server 
either when it completes or when the scheduler preempts it and puts it back into the list of pending requests. In 
either situation, the scheduler selects the request that should be serviced next. From time to time, the scheduler 
admits one of the arrived requests for active consideration and enters it into the list of pending requests. Actions 
of the scheduler are shown by the dashed arrows in Figure 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7.1 A schematic of scheduling. 
Events related to a request are its arrival, admission, scheduling, preemption, and completion. 
 
 
 
 
 
 
 
 


