	TUTE OF INOLOGY		USN								3	WS.
	T				esment	Test - I	I		1			CMR
Sub:	ENGINEERING EI	LECTROMAC	GNETIC	LS					Code		15EC36	D G
Date:	02 / 11 / 2016	Duration:	90 mins	M	lax Mark	s: 50	Sei	m: III	Bran		ECE(A, I D)/TCE	В, С,
	Answer An	ny FIVE FULI	L Questi	ons cl	noosing 6	ither (a)	or (b) f	rom eacl	h quest	ion.		-
										Mark	OI CO	BE RBT
	NOW, V. A. 2 00 V =	Illowing scalar $y^2 + z^2$ $B\rho^{-4}$) $\sin(4\phi)$ $\nabla \cdot (\nabla \cdot \nabla) = \sqrt{2}$ $\nabla $	fields a $ \begin{array}{c} -\nabla \\ -\nabla \\$	e D) = Po 3 equals 2 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 = 3 =	(Ax 2x =	the ag	thus.		[10]		L1

		I		
	1)			
	Solve $\frac{\partial V}{\partial x} = 4x$ $\frac{\partial V}{\partial y} = -6y$ $\frac{\partial V}{\partial z} = 28$ $\frac{\partial^2 V}{\partial z^2} = 4$ $\frac{\partial^2 V}{\partial y^2} = -6$ $\frac{\partial^2 V}{\partial z^2} = 2$			
	: 324 + 324 + 324 = 04-6+2 = 0 = D2V			
	· VV=0) -> giver V satisfies haplace's egm.			
	ii)			
	$\frac{1}{2} \left(\partial \nabla^2 V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \rho^2} \right)$			
	= \frac{1}{p} \frac{\partial P (4AP^2 \rightarrow - 4BP^5) \frac{1}{p^2 \partial 4} + BP^4 +			
	= 1 (16Ap3 + 200 168p-5) may			
	- 1 (AP4+8p-4) 16 2474 \$			
	= 16Ap m 4 \$ + 168p 6 m 4 \$ p - 16Ap en 4 \$			
	-16 B p-6 ein 4 \$= 0			
	(OR)			
(b)	State and prove Uniqueness theorem.	[10]	CO1	L1
	If the solution of haplace's equation satisfies the boundary (ondition then that solution is unique by whatever method it is oftained.			
	the solution of Laplace's equation gives the fold which is unique, sutirtying the same boundary conditions, in a given negron			
	Prof! V2V=0			
	ue take two solution of baflace's equation V, and			
	$\nabla^2 V_1 = 0$ $\nabla^2 V_2 = 0$ $\Rightarrow \nabla^2 (v_1 - v_2) = 0$			
	equation of V, on boundary Vib.			
	$-11-v_2-11-v_2b$.			
	Vo -> given hotential value on boundary	1	l	

	$V_{1b} = V_{2b} = V_{b}$			
	= V16-V26=0			
	considering the rection identity.			
	₹·(VB) = V(₹·B)+B·(₹·V)			
	convidering a scalar to be (V,-V2)			
	loveridering a scalar to be (V,-V2) loveridering the vector to be ₹(V,-V2)			
	$\overrightarrow{\nabla} \cdot ((v_1 - v_2)) \overrightarrow{\Rightarrow} (v_1 - v_2) \overrightarrow{\Rightarrow} \overrightarrow{\Rightarrow} (v_1 - v_2) \overrightarrow{\Rightarrow} \overrightarrow{\Rightarrow} (v_1 - v_2) + (\overrightarrow{\Rightarrow} (v_1 - v_2) \cdot \overrightarrow{\Rightarrow} (v_1 - v_2)) \overrightarrow{\Rightarrow} (v_1 - v_2) \overrightarrow$			
	taking wheme integral on both sides.			
	(25) 3 7 (
	(C)(V,-V2) = (V,-V2) = (V,-V2) do + ((V,-V2))do			
	OC by OF			
	LHS = O[(V,-V2) → (V,-V2)]·d3 Fapotlescs)			
	= P((V16-V26) \$ (V16-V26)] .d3			
	- (P(V,-V)) do = (None on integral may be sero if either the integrand is everywhen you are, on the integrand is me in zeroe, on the integrand is me in zeroe and we in other regions,			
	[V(1-12)] do to Life extless the integrand is me in			
	algebrainly. In this case the in			
	on the boundary not be we.			
	$V_1 - V_2 = V_{1b} - V_{2b} = 0$			
	= \(\frac{1}{2} \cdot \frac{1}{2} - \frac{1}{2} = 0			
	\(\nu_1 = \nu_2\)			
2(a)	Using Laplace's equation for potential field, derive the expression for	[10]	CO5	L4
	capacitance of a cylindrical capacitor, where L is the length of the capacitor, a			
	& b are inner and outer radii of the cylindrical layers and $V = V_0$ at $\rho = a$ and $V = 0$ at $\rho = b$.			
	1 · · · · · · · · · · · · · · · · · · ·	1	l	

中部(学)=0		
POV=9		
$\frac{\partial V}{\partial f} = \frac{G}{f}$		
V= GlnP+Cz		
V=0 at P=b 0=Glnh+C2		
Vo=Glnb-Ina]		
Vo= 4 ln(ay)		
=> 9 = Vo In(9/b)		
Cz= -Vo Inb In (9/b)		
V= Uslne - Volab- ln(a/b) - Unla/b)		
E: →V		
= - dr an		
= 3 (Volne - Vo lob) ag		
E= -Vo Plago ap		
D: 6E		
B= -1660 Pln(9/6) ay		
B= Vo 60 - 24		
8= 8.83		
Q= (VoGo Sy) Czaplap]		
Q= 2πL V660.		
$C = \frac{8}{V_0}$		
$C = \frac{Q_{1}}{V_{0}}$ $C = \frac{2\pi L \epsilon_{0}}{\ln(2\omega)}$		
(OR)		
	L L	

(b)	State Biot-Savart law. Derive the expression for magnetic field intensity at a point due	[10]	CO1	L1
	to an infinitely long conductor carrying current I Amperes. Consider ρ is the distance			
	of the point from the conductor.			
	(A) Bid-Savulle care:			
	Let's consider a differented current element as a			
	(4) Bid-Savalis ear :- Let's consider a differential current element as a vanishingly small seation of a current - carrying libration to a current of a current conductors			
	filomentary conductor, where a filomentary Conductor			
	filementary conductor, where a filementary is the limiting case of a cylindrical conductory is the limiting case of a cylindrical conductory approaches			
	of circular cross-section as the radius approaches			
	Zero.			
	We assume a current I flowing in a different vector length of the filament dt. The Book-Savants law			
	length of the product of the Broth of the			
	than states that, having by the alless tid			
	field internet product to the			
	denent is proportional			
	then states that, at any point of the mag. of the mag. field intensity produced by the differential clement is proportional to the product of the curet, the mag. of the differential length and			
	the sine of the angle lying b/w the yourment			
	and a line cornecting the filament to the point			
	P at which the hild is derived Alex his			
	P at which the field is derived. Also the nagnitude of the mag. field intensity is inversely proportional to the source of the distance from the			
	and the distance land			
	proportional to the squire of the			
	differential elevent to point P.			
	Pout			
	F. Fidr vác			
	$\frac{1}{4\pi} = \frac{I_1 dI_1 \times dR_{12}}{4\pi R_{12}^2}$			
	are (pout 2)			
	where dits is may, field interestly produced by a differential envert element I, II, The direction			
	differential envent element I. II. The dise bear			
	of dis is into the page.			

	Solution with $z = 0$ to $z = 0$ from $z = $			
	$= \frac{1}{4\pi} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{4\pi} \int_{-\frac{\pi}{4}}^{\pi$			
3(a)	State Ampere's circuital law. Derive the expression $\nabla \times \mathbf{H} = \mathbf{J}$ for static magnetic fields.	[10]	CO1	L1
	magnetic fields. Amparo's circuitod law states that, The line integral of magnetic field intensity H around a classed path is exactly agral to the direct current enclosed by that path, if H. II = I enclosed.			

to condinates is related for the officialism of Amperos circulal law to determine the spatial rate of change of H. - closed line sloged of H about this path is oppose, the sun of the four values of H. Oi -. ared in az direction. : (H. OL) 1-2 = H7,1-2 A7 Ho, F2 (Hy o + dHo dx) (H. Di) 1-2 = (HO. + 1 3HO AX) dy (H, di) 2-1= Home - (Hx. + 1 3Hx 47) 0x (-ve sign because of falk direction.)

(b)	CINCH = $\begin{vmatrix} \hat{a}_{x} & \hat{a}_{y} & \hat{a}_{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix} = \nabla \times \hat{H}$ For make of well to obtain a system. $\vec{\nabla} \times \vec{H} = \begin{pmatrix} \frac{1}{2} & \frac{\partial H_{z}}{\partial y} - \frac{\partial H_{z}}{\partial z} & \hat{a}_{z} + \begin{pmatrix} \frac{\partial H_{z}}{\partial z} - \frac{\partial H_{z}}{\partial z} & \hat{a}_{z} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$ $\vec{\nabla} \times \vec{H} = \frac{1}{2} \frac{\partial H_{z}}{\partial z} - \frac{\partial H_{z}}{\partial z} \hat{a}_{z} + $	F1.01		
(b)	Calculate the current density J at P (2, 3, 4). It is given that $\mathbf{H} = x^2 z \mathbf{a_y} - y^2 x \mathbf{a_z}$.	[10]	CO5	L3

4(a)	Given $\mathbf{H} = 6xy \mathbf{a}_x - 3y^2 \mathbf{a}_y$ A/m. Show that $\oint \mathbf{H} \cdot d\mathbf{L} = \oiint (\nabla \times \mathbf{H}) \cdot d\mathbf{s}$ for the rectangular path around the region $2 < x < 5, -1 < y < 1$ on the $z = 0$ plane.	[10]	CO5	L3

$$\frac{Ch}{H, \vec{M}} = (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{2}) \cdot (d_{A} \hat{a}_{A} + d_{B} \hat{a}_{3} + d_{Z} \hat{a}_{4})$$

$$= (c_{A3} d_{A} - 3g^{2} d_{3}) \cdot (d_{A} \hat{a}_{A} + d_{B} \hat{a}_{3} + d_{Z} \hat{a}_{4})$$

$$= (c_{A3} d_{A} - 3g^{2} d_{3}) \cdot d_{B} \hat{a}_{3}$$

$$= (c_{A3} d_{A} - 3g^{2} \hat{a}_{3}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{3}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{3}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{3}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{3}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{3}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{3}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{3}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{3}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A} \hat{a}_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A}) \cdot d_{A}$$

$$= \int_{C} (c_{A3} \hat{a}_{A} - 3g^{2} \hat{a}_{A})$$

(b)	Derive the expression for the scalar and vector magnetic potentials.	[10]	CO1	L1
	Scalar nagnetic potential:			
	gives the magnetic field extensity.			
	previous definition.			
	TXH=J= TX (- TVm) = 0			
	sides magnetic potential, then whent density should be zero throughout the region in which the scalar magnetic potential to be defined.			
	It also satisfies tally			
	i.e. $\vec{\nabla} \cdot \vec{B} = \mu_0 \vec{\nabla} \cdot \vec{H} = 0$ (in free space)			
	· · · · · · · · · · · · · · · · · · ·			
	Doution bout a myle valued function of			
	Then, $\vec{H} = \frac{I}{2\pi\rho} \vec{a} \phi$.			
	N= - Vm => I = - f 2Vm			

			1	
	$\frac{\partial V_n}{\partial \phi} = -\frac{1}{2\pi}$ $V_m = -\frac{1}{2\pi} + \frac{1}{2\pi} \text{ of integration = 0]}$			
	proceed so he vy = 0 at 1 = 0.			
	Then offer one mallete actuation, of Vonit			
	But we algreedy said Vn=0 at \$=0.			
	\$ €. di = 0.			
	Value - S. E. Li independent of the path. But leve, \$\forall XH = 0, when \$\forall = 0			
	along the both of extension , even if I is zero			
	will ame then contest increases to the			
	Vma, a = - S H. di (specified path)			
	Vector magnetic potential!			
	divergence of the coul of any vector = 0			
	We done $\vec{B} = (\vec{\nabla} \times \vec{A})$			
	(where, A' - magnetic vector potential)			
	$\overrightarrow{\nabla} \times \overrightarrow{A} = \overrightarrow{\exists} = \underbrace{do} (\overrightarrow{\nabla} \times \overrightarrow{\nabla} \times A)$			
	A= Justal A= Justal 40 R			
5(a)	Deduce Maxwell's equations in point form and integral form for time varying E and	[10]	CO1	L1
	H fields.			

Stationery path.

pagedic flax shine surgey quantity.

i.end =
$$\int_{0}^{\infty} \vec{f} \cdot \vec{l} \vec{l} = -\int_{0}^{\infty} \frac{\partial \vec{g}}{\partial t}$$
, did

Applying States theorem over Identical gene

Surfaces.

($\vec{\nabla} \times \vec{E}$), $d\vec{s} = -\int_{0}^{\infty} \frac{\partial \vec{g}}{\partial t} \cdot d\vec{s}$

Surfaces.

($\vec{\nabla} \times \vec{E}$) = $-\frac{\partial \vec{g}}{\partial t}$ differential on part \vec{f} ,

($\vec{\nabla} \times \vec{E}$) = $-\frac{\partial \vec{g}}{\partial t}$ differential on part \vec{f} ,

($\vec{\nabla} \times \vec{E}$) = $-\frac{\partial \vec{g}}{\partial t}$ differential on part \vec{f} .

From Appears is mild law, ($\vec{\nabla} \times \vec{H}$) = \vec{f} .

1. \vec{f} subscribes

 \vec{g} \vec{f} = $-\frac{\partial \vec{g}}{\partial t}$
 \vec{f} subscribes

 \vec{g} \vec{f} = $-\frac{\partial \vec{g}}{\partial t}$
 \vec{f} subscribes

 \vec{g} \vec{f} = $-\frac{\partial \vec{g}}{\partial t}$
 \vec{f} is a sum of individing \vec{f} and we all in unknown

 $\vec{\nabla} \times \vec{H} = \vec{v} + \vec{G}$
 \vec{g} \vec{f} $\vec{f$

	Favaday: Iam : $\oint \vec{E} \cdot d\vec{l} = -\int \frac{\partial \vec{G}}{\partial t} \cdot d\vec{l}$ $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{G}}{\partial t} = -\sum_{i=1}^{n} (\vec{\nabla} \cdot \times \vec{E}) \cdot d\vec{l} = -\sum_{i=1}^{n} (\vec{\nabla} \cdot \times \vec{E}) \cdot d\vec{l} = -\sum_{i=1}^{n} (\vec{G} \cdot \vec{G}) \cdot d\vec{l}$ Ampagae's eixembel law; $\oint \vec{H} \cdot d\vec{l} = \vec{L} + \int \frac{\partial \vec{G}}{\partial t} \cdot d\vec{l}$ $\oint \vec{\nabla} \times \vec{H} = \int \vec{J} \cdot d\vec{l} + \int \frac{\partial \vec{G}}{\partial t} \cdot d\vec{l}$ $\Rightarrow \vec{\nabla} \times \vec{H} = \vec{L} + \int \frac{\partial \vec{G}}{\partial t} \cdot d\vec{l}$ (OR)			
(b)		[10]	CO6	L3
	Given $V = x(z - ct)$ and $A = x(\frac{z}{c} - t)a_z$. Show $\nabla \cdot A = -\mu_0 \varepsilon_0 \frac{\partial V}{\partial t}$ and $C = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$.	[10]	C00	L3
	Calculate E and D. $ \begin{array}{cccccccccccccccccccccccccccccccccc$			
	Now, 34 = -x = -x			
	inflying the given statement will hold for			

1) Now,
$$\vec{E} = -\vec{\nabla} V - \frac{\partial \vec{A}}{\partial t}$$

$$\vec{\nabla} V = \left(\frac{\partial}{\partial x} \hat{a}_{\lambda} + \frac{\partial}{\partial y} \hat{a}_{y} + \frac{\partial}{\partial z} \hat{a}_{z}\right) \left[x(z-d)\right]$$

$$= (z-d) \hat{a}_{\lambda} + x \hat{a}_{z}.$$

$$\vec{\partial} \vec{A} = \frac{\partial}{\partial t} \left[x(z) - t\right] \hat{a}_{z} = -x \hat{a}_{z}.$$

$$\vec{\partial} \vec{c} = -\vec{\nabla} V - \frac{\partial \vec{A}}{\partial t} = -(z-d) \hat{a}_{\lambda} - x \hat{a}_{z} + x$$

$$= (ct-z) \hat{a}_{\lambda} V/m$$

$$\vec{D} = \vec{c} \cdot \vec{c} = \vec{c} \cdot (d-z) \hat{a}_{\lambda} C/m^{2}$$

	Course Outcomes		P02	PO3	P04	PO5	P06	PO7	PO8	P09	PO10	PO11	PO12
CO1:	Explain and solve problems related to Basic Concepts of Electric Fields, Magnetic Fields and Electromagnetic Waves and basic Concepts to Solve Complex Problems in Electric Fields, Magnetic Fields and Electromagnetic Waves.	3	3	0	0	0	0	0	0	0	1	0	1
CO2:	Interpretation of Gradient, Divergence and Curl Operators.	3	3	0	0	0	0	0	0	0	1	0	1
CO3:	Interpretation of Maxwell's Equations in differential and integral forms and interpretation of wave propagation in free space and dielectrics.	3	3	0	0	0	0	0	0	0	1	0	1
CO4:	Apply the knowledge gained in the design of Electric and Electronic Circuits, Electrical Machines and Antenna's and Communication Systems.	3	3	3	3	0	0	0	0	0	1	0	0
CO5:	Analyze different Charge and Current Configurations to derive Electromagnetic Field Equations. Analyze Poisson's and Laplace's Equations, Uniqueness theorem, and solution of Laplace's equation.	3	3	1	3	0	0	0	0	0	1	0	0
CO6:	Analyze Time-varying fields, Maxwell's equations, wave propagation in free space and dielectrics.	3	3	1	3	0	0	0	0	0	1	0	0

Cognitive level	KFYWORDS
Cogintive level	ILI WORDS

L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions; PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7-Environment and sustainability; PO8 - Ethics; PO9 - Individual and team work; PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning