Internal Assessment Test 1 – Sep. 2016 | Sub: | Turbo-Machines | | | | | | | Code: | 10ME56 | | |-------|----------------|-----------|---------|------------|----|------|--------|---------|--------|--| | Date: | 08/09/2016 | Duration: | 90 mins | Max Marks: | 50 | Sem: | 5(A&B) | Branch: | ME | | # PART-A (Answer any 2) 1. Draw the velocity triangle at inlet and exit of a turbomachine in general and derive modified Euler's equation. Also explain the significance of each term in the equation. (10 Marks) Consider the outlet velocity D'e [@ and @]. In both the cases, there are two possible right angle triangles. [consider either @ or @]. O'e 1 > (omprising of Vpg, V2 and Vwg. O'e 2 > (omprising of Vpg, Vrg and (Ug-Vwg). From D'e 1, Va = Vp3 + Vw3 - 1 From D' 2, V22 = V22 + (U2 - Vw2)2 - - 2 But in fig (c), Ug and Vwg are opp in direction. Hence (Ug-Vwg). In fig (d), Ug and Vwg are in same direction. Hence for Die 2 in fig (d), the bose is (Ug-Vwg). 3 = 1 $V_{3}^{2} - V_{\omega_{3}}^{2} = V_{7_{3}}^{2} - U_{3}^{2} - V_{\omega_{3}}^{2} + 2 U_{2} V_{\omega_{2}}.$ $2 U_{2} V_{\omega_{3}} = V_{3}^{2} + U_{2}^{2} - V_{7_{2}}^{2}.$ $U_{2} V_{\omega_{3}} = \frac{1}{2} \left[V_{3}^{2} + U_{2}^{2} - V_{7_{3}}^{2} \right]. \qquad G$ $U_{2} V_{\omega_{3}} = \frac{1}{2} \left[V_{3}^{2} + U_{3}^{2} - V_{7_{3}}^{2} \right]. \qquad G$ $111^{17} \text{ from inlet velocity } D^{1e_{3}}, \text{ we get.}$ $$U, V_{\omega_1} = \frac{1}{2} \left[V_1^2 + U_1^2 - V_{7,3}^2 \right].$$ 3 MARKS But Euler Turbine equation is. E = U, Vu, - Va Vuz. Substituting @ and @ in above eqn, $E = \frac{1}{2} \left[V_1^2 + U_1^2 - V_2^3 - V_2^2 - U_2^2 + V_2^2 \right].$ E = 1 [(V,2-V,2) + [V,2-V,2) + [V,2-V,2] - (6) Egn (is applicable for Power producing type. 2 MARKS For Power Absorbing Machines, $E = \frac{1}{2} \left[(V_3^2 - V_1^2) + (U_3^2 - U_1^3) + (V_7^2 - V_7^3) \right] - \widehat{O}.$ Eqn 6 and 7 are different forms of Euler Turbine The three terms inside the bracket of @ and @ indicates nature of energy transfer. Equation. Significance of Each term 1) 1 [V,2-V2] represent the change in absolute kinetic energy of the fluid, during its passage. Hence, this term represents the change in dynamic head. (a) \frac{1}{2} [U,2-U,2] represent the change in fluid energy due to movement of rotation of fluid from one radius 1 MARK to another i.e., Centrifugal energy. Hence this term represents the change in static head. (hango in static head within the rotor. 1 MARK 2.Define utilization factor for a turbine and derive an expression for the same involving degree of reaction (10 Marks) Ulilization Packor = $$\mathcal{E} = \frac{(V_1^2 - V_3^2) + (U_1^2 - U_9^2) + (V_{13}^2 - V_{13}^2)}{V_1^2 + (U_1^2 - U_9^2) + (V_{13}^2 - V_{13}^2)}$$ Substitute ① in ② $$= \mathcal{E} = \frac{(V_1^2 - V_3^2) + \frac{R}{1 - R} (V_1^2 - V_2^2)}{V_1^2 + \frac{R}{1 - R} (V_1^2 - V_3^2)}$$ $$= \mathcal{E} = \frac{(1 - R)(V_1^2 - V_3^2) + R(V_1^2 - V_3^2)}{(1 - R)(V_1^2 + R(V_1^2 - V_3^2))}$$ $$= \frac{V_1^2 - V_2^2 - RV_1^2 + RV_2^2 + RV_1^2 - RV_3^2}{V_1^2 - RV_3^2}$$ $$= \frac{V_1^2 - V_2^2}{V_1^2 - RV_2^2}$$ $$= \frac{V_1^2 - V_2^2}{V_1^2 - RV_2^2}$$ #### **PART-B**(Answer all) 4. Draw inlet and exit velocity triangles for a radial flow machine with i) Backward blade ii) Radial blade iii) Forward blade (8 marks) 5. Performance of a turbomachine depends on the following variables, Discharge (Q), Speed (N), Rotor diameter (D), Energy per unit mass flow (gH), Power (P), Density (ρ), Dynamic viscosity (μ). Using dimensional analysis, obtain the π -terms. (Do not expalin the significance) (12 Marks) #### SCHEME: EACH π -term carries 4 Marks each $$T_1 = \frac{1}{1}$$ $T_2 = \frac{1}{1}$ $T_3 = \frac{1}{1}$ $T_4 = \frac{1}{1}$ $T_5 \frac{1}{1$ $T_{3} = Perm$ $T_{3} = D^{a_{3}} N^{b_{3}} J^{c_{3}} P.$ $M^{0}L^{0}T^{0} = L^{a_{3}} (T^{-1})^{b_{3}} (ML^{-3})^{c_{3}} ML^{2}T^{-2}$ $F_{qualing} Powers of M,$ 0: (3+1) $F_{qualing} Powers of L,$ $0: a_{3}-3c_{3}+2$ $F_{qualing} Powers of T,$ $0: -b_{3}-3$ $F_{$ Ty-term Ty=Dan Nongin p Molo To = Lan(T-1) bn (Ml-3) (Ml-17-1]. Equating Powers of M, 0=Ch+1 => Ch=-1 Equating Powers of T, 0=-by-1 => by=-1 Equating Powers of L, 0=an-3cn-1 => an=-3 Tn=D-2 N-1 g-1 p Tu= 4 SND2 ## PART- C (Answer any one) 6. In a certain turbo machine, the inlet whirl velocity is 15m/s, inlet flow velocity is 10m/s, blade speeds are 30m/s and 8m/s respectively. Discharge is radial with an absolute velocity of 15 m/s. If water is the working fluid, flowing at the rate of 1500 litre/s, calculate: i) Power in kW ii) the change in total pressure in bar iii) the degree of reaction and iv) Utilization factor. (10 Marks) $$\frac{D_{0} \lambda_{0}}{R = 0.5}$$ $$\frac{N_{0} = 10 \text{ kg/s}}{V_{1} = 155 \text{ m/s}}$$ $$\frac{N_{1} = 155 \text{ m/s}}{V_{2} = 155 \text{ m/s}}$$ $$\frac{N_{2} = 155 \text{ m/s}}{V_{3} = 155 \text{ m/s}}$$ $$\frac{N_{3} = 1 \text{ so}}{V_{3} = 155 \text{ m/s}}$$ $$\frac{N_{4} = 10 \text{ kg/s}}{V_{1} = 155 \text{ m/s}}$$ $$\frac{N_{5} = 10 \text{ kg/s}}{V_{1} = 155 \text{ m/s}}$$ $$\frac{$$ 7. The velocity of fluid from the nozzle in an axial flow impulse turbine is 1200 m/s. The nozzle angle is 22°. If the rotor blades are equiangular and the rotor tangential blade speed is 400m/s, find i) The rotor blade angles ii) The tangential force on the blade rings iii) Power Output iv) Utilization Factor. Assume $V_{rl}=V_{r2}$ (10 Marks) $$\cos \beta s = \frac{U_0 + V_{w_0}}{V_{v_0}} = \cos 32.24 = \frac{400 + V_{w_0}}{842.6}$$ $$= V_{w_0} = 312.66 \text{ m/s}.$$ $$= \int_{T} = \dot{m} \left(V_{w_1} + V_{w_0} \right)$$ $$= 1 \times \left(1112.6 + 312.66 \right)$$ $$= 2 \text{ MARKS}$$ $$V_{3}^{2} = V_{13}^{2} + U^{2} - 2V_{13}U \cos\beta_{3}$$ $$= 842.6^{2} + 400^{3} - 2842.6 \times 400 \times \cos 3224$$ $$V_{3} = 547.49 \text{ m/s}.$$ 2 MARKS