CMR INSTITUTE OF TECHNOLOGY

ICN						-
JSN						

Internal Assessment Test II

SUBJE	SUBJECT: MECHANICAL VIBRATIONS						Code:	10ME72	
Date:	02/11/2016	Duration:	90 min	Max. Marks:	50	Sem:	07	Branch:	MECH

Note: Answer any three questions from Part-A. Part-B is compulsory. Tidiness and attention to details carry 5 marks.

	Q. lo.	Question	Marks	OBE	MAP RBT	
1		PART – A	8			
1	a	Starting from first principles derive the general differential equation to describe the motion of an under-damped oscillatory system. Neatly sketch the response curve.	[10]	CO2 CO3	L3	
2	a	Derive an expression for the logarithmic decrement of a vibrating system. Following usual conventions, show that $\delta = \frac{1}{n} \log_e \left\{ \frac{x_0}{x_n} \right\}$	[6]	CO2 CO3	L3	
	b	If the ratio of successive amplitudes of a viscously damped single degree of freedom system is 10:1, what will be the ratio of successive amplitudes if the damping ratio is reduced by 50%? Comment on the type of damping exhibited by the system.	[4]	CO3	L3	
3	a	Derive an expression for the amplitude of a whirling shaft without air damping.	[4]	CO4	L2	
	b	The rotor of a turbo-super charger weighing 88.3N is keyed to the centre of a 25mm diameter shaft, 40cm between the bearings. Determine (i) the critical speed of shaft; (ii) the amplitude of vibration of the rotor at a speed of 3200 rpm when the eccentricity is 0.015 mm; and (iii) the vibratory force transmitted to the bearings at this speed. Assume the shaft to be simply supported and the shaft material has a density of 8gm/cm ³ . Take $E = 2.06 \times 10^5 MPa$.	[6]	CO4	L3	
4	a	With the help of a suitable sketch, explain dynamic vibration absorber. Show that for such systems its natural frequency should be equal to the frequency of the applied force.				
	b	A ring is connected to a shaft by means of a spiral spring. It is used for measuring torsional acceleration. The system is provided with a viscous damper having a spring constant of 0.12 N-ms/rad. The torsional stiffness of the spring is 1N-m/rad and the moment of inertia of the ring is 0.05kg.m². Determine the maximum acceleration of the shaft if the relative amplitude between the ring and the shaft is 2.5°. The frequency of the shaft is 20 cycles/minute.	[4]	CO4	L3	
		PART – B				
5	a	Compute the natural frequencies of the dynamic system shown. $l_1/3$ $Uniform\ rod\ of\ length\ l_2=0.9m$ $and\ mass\ m_2=$ $65.7/g$ $l_2/2$ $Uniform\ rod\ of\ length\ l_1=1.8m$ $and\ mass\ m_1=$ $131.4/g$	[15]	CO5	L4	

Mapping of Course outcomes with Program Outcomes

	Course Outcomes	P01	P02	P03	P04	P05	90d	P07	P08	P09	PO10	PO11	PO12
CO1	Describe the terminologies and fundamental concepts associated with a dynamical system.	3											
CO2	Discuss the need and implications of system idealization, mathematical modelling, analysis and interpretation of the equation of the given mechanical system.	3	2	1									The control of the co
CO3	Classify the behaviour of a vibratory system executing free vibrations into an un-damped, underdamped, critically-damped and over-damped system, and interpret the response curves.	3	3	2									
CO4	Analyze the given rotating system to determine the critical speed; Recognize the way it relates to the system response of forced vibrating system; Interpret the findings with reference to vibratrion measuring instruments.	3	3	1			The state of the s						
CO5	Evaluate the natural frequencies and mode shapes of two DOF, Multi DOF systems and continuous systems, and apply them to practical problems. Discuss the principles and application of dynamic vibration absorbers.	3	3	2	The state of the s		Annual primary between property and the control of	Manufact Communications (Act Applied Colonia) and property of the Colonial					

Cognitive level	KEYWORDS - Revised Bloom's Taxonomy (RBT)
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

Program Outcomes:

PO1 - Engineering knowledge; PO2 - Problem analysis; PO3 - Design/development of solutions; PO4 - Conduct investigations of complex problems; PO5 - Modern tool usage; PO6 - The Engineer and society; PO7- Environment and sustainability; PO8 — Ethics; PO9 - Individual and team work; PO10 - Communication; PO11 - Project management and finance; PO12 - Life-long learning

Scheme of Solution IA-2: MV: 02. Nov. 2016. 1 a. O Physical Model of spring-man-damper System. Force Balancing 1 Newtons I Law: Std form of Diff-Egn. 1 Assume Solution: Apply to Diff. Egn.; Si, Sz; $x(t) = x_i e^{-t} + x_i e^{-t}$ 1 $x(t) = x_i e^{-t} + \sqrt{x} e^{-t}$ 2 $x(t) = e^{-t} \times \sin(\omega_a t + a)$ 2 $x(t) = e^{-t} \times \sin(\omega_a t + a)$ 1) Figure. 1 Logarithmic decrement definition 2 a (1) aeneral expression of nets for under-damper oscillating system Max. Amplitude for souccessive oscillation (x1)max; (x1)max. at t=t,1 (3) (Ratio of successive amplitudes; 21/2n = 24/2s 2/2s. 2/2n. 2n/2n. $O(\frac{70}{\pi}) = 10$; $\delta = \frac{\log 2 \log }{10} = 2.3$ $\delta = \frac{2\pi \xi}{\sqrt{1-\xi^2}}$; Solve for $\xi = 0.34$ 26. 1) Halve & to get & = 0.17 $\log(\pi_0/\pi) = 2\pi \times 0.17 / \sqrt{1-0.17} = 1.083$ $\pi_0/\pi = 2.95$ Comment: Under-damped System. Sketch of the System: Defining m, e, y, 8, ω , W. k $\int m\omega^2(y+e) = ky-1$ Simplify the expression to obtain $y=\pm \frac{e}{\omega_n^2}-1$ 3a. OVd. of shaft = 1:96×10 4 m3 36-Mass of shaft (0.4m long) = 1.57 kg. δ , = Stahe def. due to shaft weight = 5/384 WC/EZ = 1.92 ×10. I= 764 d9= 1-92 ×10 8 m4

Eg = Stake def due to wt. of supercharger = NL3 = 2.98 ×10 5 m. Critical Speed of shaft = $N_c = \frac{1}{2\pi} \sqrt{\frac{9}{6}} = \frac{0.4985}{\sqrt{5, +\frac{52}{1.27}}} = \frac{96.44 \text{ yps}}{57.86.9 \text{ ypn}}$ (3) K= Shaft Stiffness = 2966400 N/m (2) { Total dynamic load}= $Ky = 2966400 \times 6.61 \times 10^{-6} = 19.61 \text{ N}$ on 2 bearings 4a) [Sketch of the absorber + 2 diff-equation of motion.

Assume Solutions for x, + xz; Algebriac Equations.

Decreased of the absorber + 2 diff-equation of motion. Expression for A and B
 A_{st}; ω, ω₂, μ; Show that A = 0 when ω = ω₂ 4b) (arcular freq. of vibrating body, $\omega = 2.0944$ rates

(incular freq of undamped vibration $\omega = \sqrt{9} - \sqrt{1} = 4.472$ Freq. rates $\omega = 0.4683$ $0 \quad C = 2IW\xi = 0.12 \Rightarrow \xi = 0.268$ $\frac{\theta_{\xi}}{\theta_{y}} = \frac{r^{2}}{\sqrt{(1-r^{2})^{2}+k_{f}^{2}r^{2}}} \longrightarrow \theta_{y} = 9.35^{\circ} = 0.1632 \text{ Stadian}$ Max. Angular acc g slop = $\omega \partial y$ = $2.0944 \times 0.1632 = 0.7159$ say.

95' FBD of the rodal the LHS. Inertia forque = $I_0 \cdot \theta$, where $I_0 = \frac{1}{3 \times 9} \cdot \frac{(131.4)}{3 \times 9}$ Restoring torque $= -K \left(\frac{l_1 \theta_1}{3} \right) \cdot \frac{l_1}{3} + K \left(\frac{l_2 \theta_2}{2} \right) \cdot \frac{l_3 l_1 \cdot l_1}{3} + K \left(\frac{l_2 \theta_2}{2} \right) \cdot \frac{l_3 l_1 \cdot l_2}{3} + \frac{l_1 l_2}{3} \cdot \frac{l_2 \theta_2}{6} - \frac{l_1 l_2}{6} \cdot \frac{l_2 \theta_2}{6} - \frac{l_3 l_2 \cdot l_3}{6} = 0$ Inentia torque = $I_{02}\theta_2 = \frac{1}{3} \times \frac{65.7}{9} \cdot l_2 \theta_3$ Restoring torque $\frac{\sqrt[4]{65\cdot7}}{9} = -k\left(\frac{l_2}{2}\theta_2\right)\cdot\frac{l_2}{2} + k\left(\frac{l_1}{3}\theta_1\right)\cdot\frac{l_2}{2} + k\left(\frac{l_1}{3}\theta_1\right)\cdot\frac{l_2}{2} + k\left(\frac{l_2}{3}\theta_1\right)\cdot\frac{l_2}{2} + k\left(\frac{l_1}{3}\theta_1\right)\cdot\frac{l_2}{2} + k\left(\frac{l_1}{3}\theta_1\right)\cdot\frac{l_2}{2} + k\left(\frac{l_2}{3}\theta_1\right)\cdot\frac{l_2}{2} + k\left(\frac{l_1}{3}\theta_1\right)\cdot\frac{l_2}{2} + k\left(\frac{l_1}{3}\theta_1\right)\cdot\frac{l_2}{2} + k\left(\frac{l_2}{3}\theta_1\right)\cdot\frac{l_2}{2} + k\left(\frac{l_1}{3}\theta_1\right)\cdot\frac{l_2}{2} + k\left(\frac{l_2}{3}\theta_1\right)\cdot\frac{l_2}{2} + k\left(\frac{l_2}{3}\theta$ $\frac{65.7}{39} l_2^2 \theta_2 + K. \frac{l_2^2}{4} \theta_2 - K. \frac{l_1 l_2}{6} \theta_1 = 0 - 2$ · Assume $\theta_1 = A \sin(\omega t)$ and $\theta_2 = B \sin \omega t$. Convert () and () to algebriac equations in A and . Evaluate A and B noing Cramers rule. . Get the frequency equation and solve for Wn, wn